
Product Brief

SM1223 - E433/868/915

433, 868 and 915 MHz RF Transmitter Evaluation Module

General Description:

The SM1223s are complete Radio Transmitter Modules operating either in the 433 or 868 or 915 MHz license free ISM (Industrial Scientific and Medical) frequency bands. Based on the SX1223 Transmitter, the SM1223 radio module is suitable for applications seeking to satisfy the European (ETSI EN300-220-1and EN301 439-3) or the North American (FCC part 15.247 and 15.249) regulatory standards.

SX1223 is a single chip transmitter highly integrated architecture allows for minimum external components while maintaining design flexibility. All major RF communication parameters are programmable and most of them can be set dynamically. The SX1223 offers the advantage of high data rate communication at rates of up to 153.6 kbit/s. The SX1223 is optimized for low cost applications while offering high RF output power. The device is suitable for applications which have to satisfy either the European (ETSI-300-220) or the North American (FCC part 15) Regulatory standards.

Key Product Features:

- · No RF knowledge required
- · Direct digital interface
- Fully assembled and tested
- Easy connection using connectors
- Optimized low cost design 2 layers PC-Board Small footprint – 15 mm x 20 mm
- Supply voltage 2.2 V 3.6 V
- Fully integrated VCO and frequency synthesizer
- Output power is programmable up to 10 dBm
- Data rate up to 153.6 kbit/s
- Current consumption Tx = 25.8 mA at 10 dBm

Applications:

- Active RFID
- · Wireles remote control
- Automated Meter Reading (AMR)
- · Home automation and access control
- High-quality speech, music and data over RF

Product Brief

SM1223- 433, 868 and 915 MHz RF Transmitter Evaluation Module

Symbol	Parameter	Condition	Min	Тур	Max	Unit
FR	Synthesizer frequency range	SM1223C433T SM1223C868T SM1223C915T	433 - 435 868 - 870 902 - 928		870	MHz
IDDSL	Sleep mode supply current		-	0.2	1	μΑ
IDDST	Standby mode supply current	16 MHz running	-	0.2	0.3	mA
IDDFS	Supply current in FS Mode	16 MHz running		4.2	6	
IDDT	TX mode supply current	P _{RF} = 0 dBm		12		mA
IDDT		$P_{RF} = 10 \text{ dBm}$		25		mA
FDA	Frequency deviation	Programmable	5		255 ⁽¹⁾	kHz
BR	Bit rate (2)	Programmable	1.2	4.8	19.2	Kb/s
RFOP	Max RF output power	Programmable (3 dB step)	8	10		dBm
TS_STR	Transmitter wake-up time	From oscillator enabled	-	250	500	μs
TS_OS	Quartz oscillator wake up time	Fundamental	-	1	2	ms
XTAL	Quartz oscillator frequency			16		MHz
PHN	Phase noise	10dBm unmodulated (50 kHz from carrier)		-79	-	dBc/Hz
VIH	Digital input level high	% VDD	75	-	-	%
VIL	Digital input level low	% VDD	-	-	25	%

^{(1): 250} kHZ max at 433 MHz band

Pin Schematic

Ordering Information

Part Number	Frequency band	Pin Package	
SM1223E433T	433 - 435 MHz	M	
SM1223E915T	902 - 928 MHz	Module Board 10 Pin Dual Inline header	
SM1223E868T	868 - 870 MHz		

Pin Configuration

Pin #	Name	I/O	Description			
	RFOUT	I/O	SMA RF Antenna connector			
1	SCK	I	Configuration SPI Clock			
2	VDD_EXT	1	Power Supply 3.3V			
3	SI	1	Configuration Data SPI Slave In			
4	GND		Ground			
5	SO	0	Configuration Data SPI Slave Out			
6	-		Not used – no connect			
7	EN	1	SPI Select			
8	-		Not used – no connect			
9	-		Not used – no connect			
10	CLKOUT	0	Clock to MCU (optional). NC if not used			
11	GND		Ground			
12	-		Not used – no connect			
13	GND		Ground			
14	-		Not used – no connect			
15	DCLK	0	Data clock – connect to MCU (optional : NC if not used)			
16	-		Not used – no connect			
17	LD	0	PLL Lock Detect – connect to MCU (optionnal : NC if not used)			
18	-		Not used – no connect			
19	DATAIN	Ī	Data input from MCU			
20	-		Not used – no connect			

Visit our website to locate the most current product specifications, datasheets and contact information for your local Semtech Field Applications Engineer.

^{(2):} Loop filter would have to be optimized to guaranty performances at other than typical bit rate and center frequency.

The Bit ratecould be increased up to 153.6 kbps providing the loop filter be modified for mw1 or mw2 modulation modes.