
Adafruit nRF52 Pro Feather with Mynewt
Created by lady ada

Last updated on 2017-11-23 12:05:49 AM UTC

2
6

10
12
13
13
14
14
14
15
15
18
18
19
19

21
21
21
23

25
25
25
25

26
27
27
27
29
29
29
29

29
29
30
31
32
32
32
32

34
35
37

Guide Contents

Guide Contents
Overview
Bluetooth Certification Warning
Device Pinout
Special Notes
Power Pins
Analog Inputs
PWM Outputs
I2C Pins
Assembly
Header Options!
Soldering in Plain Headers

Prepare the header strip:
Add the breakout board:
And Solder!

Soldering on Female Header
Tape In Place
Flip & Tack Solder
And Solder!

Native Installation (OS X)
Install newt and newtmgr Binaries

Install newt
Install newtmgr

Install an ARM Cross-Compiling Toolchain
Optional: Install the OpenOCD Debugger
Optional: Install Segger J-Link Drivers
Optional: Install minicom
Native Installation (Linux)
Install newt and newtmgr Binaries

Manual newt Installation
Manual newtmgr Installation

Install an ARM Cross-Compiling Toolchain
Optional: Install the OpenOCD Debugger (Segger J-Link)
Optional: Install Segger J-Link Drivers
Optional: Install minicom
Native Installation (Win)
Cut auto-reset trace
Newt

Setup Go Path

Install newtmgr Binaries
ARM Cross-Compiler
Apache Mynewt Tools

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 2 of 87

37
37
38
38
38
38
38
38
39
39

41
41
41
41
41
41

42
42
42
42
42
43
43
44
44

45
45
46

47
47
48
49
50
50
50
51
53
53
53
54
54

54
54
55
55
55

56

Standard Tools
Adafruit Tools
newt
Installing newt
Common newt Commands

newt build <target_name>
newt create-image <target_name> <version>
newt load <target_name>
newt size <target_name>
newt target show

newtmgr
Installing newtmgr
Connection Profiles

Adding a Serial Connection Profile
Listing Existing Profiles
Test the Serial Connection Profile

Common newtmgr Commands
Display Scheduler Task Activity via 'taskstat'
Uploading Application Images with newtmgr

1. Build the Target Application (newt build)
2. Sign and Version the Image (newt create-image)
3. Upload the Image (newtmgr image upload)
4. Test the Image Upload (newtmgr image test [hash])
5. Reset to Perform the Test and Image Bank Switch (newtmgr reset)
6. Confirm the Image Switch (newtmgr image confirm)

Display Internal Statistics
List all Statistic Groups
List all Values in a Statistic Group

Adafruit Mynewt Manager
Getting the Application
Source Code
Apache Mynewt Applications
Create a New Project
Create a Project Skeleton
Download Project Dependencies
Create a New Application
Create a New Target

1. Set the Target's app Field
2. Set the Target's bsp Field
3. Set the build_profile Field
4. Test the Target Settings

Final Project Structure
Build and Flash the Target

Sign the Build with a Version Number
Flash the Image via a Segger J-Link
Flash the Image via the Serial Port and newtmgr

Adding Tasks

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 3 of 87

56
56
57
58
58

58
59
61
61
61
62
63

65
65
65
66
66
67
67

67
67
68

68
70
70

71
71
72
73
73
73
73
74
74
75

75
76
76
77
77

78
78
79
79

80

Declaring a task, priority and stack size
Initializing a task
Implementing the task handler
Task Delays

os_time_delay

Example: Updating apps/first/src/main.c
Checking Task Status
Adding Shell Commands
Adding shell support
Adding a custom command handler
Example: Updating apps/first/src/main.c

Testing the Shell Command

Adding Statistics
Configuring Your App for Statistics
Adding Stats to your main.c File:

Accessing the Stats in Your Code
Initializing the Stats
Updating the Stats Values

Incrementing

Accessing Stats with the Console or newtmgr
Console Access
newtmgr Access

Example: Adding Stats to apps/first/src/main.c
Monitoring via netwmgr
Monitoring via shell/console

Adding BLE UART Support
Mynewt Nimble (BLE Stack) Documentation
Advanced Debugging
GDB Debugging
Starting the Debugger
Displaying Values

Basic Example
Formatting Display Values
Displaying an Array of Values
Useful Mynewt/Nimble Structs and Fields

Memory Manipulation
Stack Manipulation

Display the Stack Trace
Display Stack Frame Details
Displaying ARM Registers

Working with Source Code
Displaying a function
Displaying code at a specific address
Running an arbitrary function when halted at a breakpoint

Command Line Debugging

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 4 of 87

80
80
80
80
80

82
82
82
83

83
85
85
85
85
86
86
86
87
87
87

Grep'ing Source Code
Grep recursively for a partial string
Grep recursively for an exact string
Grep recursively for a string ignoring the case
Grep recursively with specific file types

Field Debugging Tips
Debugging Crash Dumps

Option 1: Debugging Crash Dumps with GDB
Option 2: Debugging Crash Dumps with objdump

Debugging Repeatable Crashes
Adafruit_Mynewt
Installing Adafruit_Mynewt
Provided Apps
Helper Modules
External Content
Mynewt Bootloader
Build and Package Management
Downloads
Module Details
Schematic

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 5 of 87

Overview

The Adafruit Feather nRF52 Pro is our latest Bluetooth Low Energy board for advanced projects and users who want
to use a fully open source Bluetooth Low Energy 5.0 stack. It has a native-bluetooth chip, the nRF52832, as well as
built in USB Serial and battery charging! We have other boards in the Feather family, check'em out here.

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 6 of 87

https://www.adafruit.com/feather

This is a special Feather - unlike the rest of the Feather family, this board is not for use with Arduino IDE. Instead, it
is for use with Mynewt only! We have programmed it with the Mynewt bootloader and updated the hardware to add
an SWD connector and an additional DFU button. If you want to use the nRF52 with Arduino IDE please check out the
Bluefruit nRF52 Feather which works out-of-the-box with our Arduino board support package. This Feather is for
advanced users only, you will be interacting with the Mynewt RTOS rather than Arduino and you cannot easily go
back-and-forth without an SWD programmer.

This chip has twice the flash, SRAM and performance of the earlier nRF51-based modules, and can do a lot of heavy
lifting. That extra processing power and memory means you can now run an RTOS for fast development of complex
projects. This board was designed to work with the Apache Mynewt operating system, which is released by the
Apache Foundation under the permissive and commercial-friendly Apache license. Apache Mynewt includes a number
of professionally written networking stacks (BLE 5.0, OIC/OCF, etc.), development tools, and professional project
management features like a secure bootloader that allows you to cryptographically sign firmware images and verify
them during device updates.

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 7 of 87

https://www.adafruit.com/product/3406
https://mynewt.apache.org/
https://openconnectivity.org/

The Adafruit Feather nRF52 Pro ships pre-programmed with the Mynewt serial bootloader that allows you to flash
firmware to the device directly from the command-line using the on-board USB Serial converter and the 'newtmgr' tool,
so you can get started right away with no additional hardware required. For more advanced debugging, however, you
can use a Segger J-Link and the on-board SWD debug connector, which gives you access to a more powerful set of
development tools and options.

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 8 of 87

We also have a custom Mynewt Manager application that we've written for iOS that allows you to perform over the air
firmware updates, and get live updates of the tasks running in the task manager, or to see any statistics generated by
the internal reporting systems that are part of the OS.

Features:

ARM Cortex M4F (with HW floating point acceleration) running at 64MHz
512KB flash and 64KB SRAM
Built in USB Serial converter for fast and efficient programming and debugging
Bluetooth Low Energy compatible 2.4GHz radio (Details available in the nRF52832 product specification)
FCC / IC / TELEC certified module
Up to +4dBm output power
1.7v to 3.3v operation with internal linear and DC/DC voltage regulators
19 GPIO, 8 x 12-bit ADC pins, up to 12 PWM outputs (3 PWM modules with 4 outputs each)
Pin #17 red LED for general purpose blinking
Power/enable pin
Measures 2.0" x 0.9" x 0.28" (51mm x 23mm x 8mm) without headers soldered in
Light as a (large?) feather - 5.7 grams
4 mounting holes
Reset button
SWD connector for debugging
100% open source firmware when used with Apache Mynewt

Bluetooth Low Energy is the hottest new low-power, 2.4GHz spectrum wireless protocol. In particular, its the only
wireless protocol that you can use with iOS without needing special certification and it's supported by all modern smart
phones. This makes it excellent for use in portable projects that will make use of an iOS or Android phone or tablet. It
also is supported in Mac OS X and Windows 8+.

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 9 of 87

file:///adafruit-nrf52-pro-feather/adafruit-mynewt-manager
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF52832
http://mynewt.apache.org/os/core_os/mynewt_os/

To make it easy to use for portable projects, we added a connector for any of our 3.7V Lithium polymer batteries and
built in battery charging. You don't need a battery, it will run just fine straight from the micro USB connector. But, if you
do have a battery, you can take it on the go, then plug in the USB to recharge. The Feather will automatically switch
over to USB power when it's available. We also tied the battery thru a divider to an analog pin, so you can measure
and monitor the battery voltage to detect when you need a recharge.

The Power of Bluefruit LE

The nRF52 Pro uses an nRF52832 chipset from Nordic, which can be used as both a main microcontroller and a
bluetooth low energy interface. For most people, they'll be very happy to use the standard Nordic UART RX/TX
connection profile - example code is provided! In this profile, the Bluefruit acts as a data pipe, that can 'transparently'
transmit back and forth from your iOS or Android device. You can use our iOS App or Android App, or write your own
to communicate with the UART service.

The board is capable of much more than just sending strings over the air! Thanks to the Apache Mynewt operating
system, you have full control over how the device behaves, including the ability to define and manipulate your
own GATT Services and Characteristics, or change the way that the device advertises itself for other Bluetooth Low
Energy devices to see.

Use the Bluefruit App to get your project started

Using our Bluefruit iOS App or Android App, you can quickly get your project prototyped by using your iOS or Android
phone/tablet as a controller. This data can be read over BLE and processed directly by the nRF52 microcontroller

Comes fully assembled and tested, with a USB Serial bootloader that lets you quickly use it from the command line. We
also toss in some header so you can solder it in and plug into a solderless breadboard. Lipoly battery and MicroUSB
cable not included (but we do have lots of options in the shop if you'd like!)

Bluetooth Certification Warning

Because of complex and expensive Bluetooth SIG certification requirements, the nRF52 Pro doesn't ship with any
default Bluetooth functionality on the post-production firmware, since at present the Mynewt BLE stack has not gone
through the certification process with the Bluetooth SIG. We aren't able to ship BLE functionality out of the box without
this certification. In order to use Mynewt in a production product, you will need to go through the certification process
for your product, although you are free to develop locally with Mynewt in a test environment.

The only Bluetooth Low Energy stack certified to run on the nRF52 modules with no additional work on your part is the
Nordic SoftDevice, which is used in the Arduino variant of these boards and can be flashed onto the nRF52 Pro using
your choice of ARM SWD debugger, such as the Segger J-Link (Adafruit bootloader and Nordic SD hex files are
available here).

When the Mynewt stack is certified by the Bluetooth SIG (no ETA on if or when that will happen since it's a long and
expensive process), Bluetooth functionality will be enabled on shipping devices, but at present only USB Serial is used
in the default firmware on production devices, and the Nordic SD should be used in commercial products if you are not
able to go through the certification process yourself. There are no HW restrictions on the nRF52 Pro boards, we simply
have our hands tied on what we can ship and claim coming off the production line.

UPDATE (Sept 17 2017): Runtime, one of the main contributors to the Mynewt core codebase, have contracted
an external company to certify nimble (the Mynewt BLE stack). Once the certification process is completed,
the results and certificate details will be posted here.

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 10 of 87

file:///bluefruit-le-connect-for-ios
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect&hl=en
file:///bluefruit-nrf52-feather-learning-guide/bleuart
file:///bluefruit-nrf52-feather-learning-guide/blecharacteristic
file:///bluefruit-le-connect-for-ios
https://play.google.com/store/apps/details?id=com.adafruit.bluefruit.le.connect&hl=en
https://www.adafruit.com/categories/138
https://www.adafruit.com/index.php?main_page=adasearch&q=microusb cable
https://www.adafruit.com/product/3571
https://github.com/adafruit/Adafruit_nRF52_Arduino/tree/master/bin/bootloader/s132_v201

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 11 of 87

Device Pinout

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 12 of 87

Special Notes

The following pins have some restrictions that need to be taken into account when using them:

PIN_DFU / P0.20: If this pin is detected to be at GND level at startup, the board will enter a special serial
bootloader mode and will not execute any user code, going straight into bootloader mode. If you wish to use this
pin as a standard GPIO, make sure that it is pulled high with a pullup resistor so that your code will execute
normally when the MCU starts up.
P0.31 / A7: This pin is hard wired to a voltage-divider on the LIPO battery input, allow you to safely measure the
LIPO battery level on your device. If possible, you should avoid using this pin directly.
FRST/P0.22: Setting this pin to GND at startup will cause the device to perform a factory reset at startup, erasing
and config data as well as the user sketch. At the next reset, you should enter serial bootloader mode by default,
since no user sketch will be present. You can use this to recover 'bricked' boards, but if you don't wish to do this
be careful not to have FRST low at startup. By default, a weak internal pull-up resistor is enabled on this pin
during the bootloader phase.

Power Pins

3.3V Output: This two pins are connected to the output of the on board 3.3V regulator. They can be used to

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 13 of 87

supply 3.3V power to external sensors, breakouts or Feather Wings.
LIPO Input (VBAT): This is the voltage supply off the optional LIPO cell that can be connected via the JST PH
connector. It is nominally ~3.5-4.2V.
VREG Enable: This pin can be set to GND to disable the 3.3V output from the on board voltage regulator. By
default it is set high via a pullup resistor.
USB Power (VBUS): This is the voltage supply off USB connector, nominally 4.5-5.2V.

Analog Inputs

The 8 available analog inputs can be configured to generate 8, 10 or 12-bit data (or 14-bits with over-sampling), at
speeds up to 200kHz (depending on the bit-width of the values generated), based on either an internal 0.6V reference
or the external supply.

The following default values are used:

Default voltage range: 0-3.6V (uses the internal 0.6V reference with 1/6 gain)
Default resolution: 10-bit (0..4095)

PWM Outputs

Any GPIO pin can be configured as a PWM output, using the dedicated PWM block.

Three PWM modules can provide up to 12 PWM channels with individual frequency control in groups of up to four
channels.

I2C Pins

I2C pins on the nRF52832 require external pullup resistors to function, which are not present on the Adafruit nRF52
Feather by default. You will need to supply external pullups to use these. All Adafruit I2C breakouts have appropriate
pullups on them already, so this normally won't be an issue for you.

Unlike digital functions, which can be remapped to any GPIO/digital pin, the ADC functionality is tied to
specified pins, labelled as A* in the image above (A0, A1, etc.).

Please note that DMA based PWM output is still a work in progress in the initial release of the nR52 BSP, and
further improvements are planned here.

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 14 of 87

Assembly
We ship Feathers fully tested but without headers attached - this gives you the most flexibility on choosing how to use
and configure your Feather

Header Options!

Before you go gung-ho on soldering, there's a few options to consider!

The first option is soldering in plain male headers, this

lets you plug in the Feather into a solderless

breadboard

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 15 of 87

https://learn.adafruit.com/assets/30192
https://learn.adafruit.com/assets/30201

Another option is to go with socket female headers. This

won't let you plug the Feather into a breadboard but it

will let you attach featherwings very easily

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 16 of 87

https://learn.adafruit.com/assets/30195
https://learn.adafruit.com/assets/30196

We also have 'slim' versions of the female headers, that

are a little shorter and give a more compact shape

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 17 of 87

https://learn.adafruit.com/assets/30197
https://learn.adafruit.com/assets/30198

Finally, there's the "Stacking Header" option. This one is

sort of the best-of-both-worlds. You get the ability to

plug into a solderless breadboard and plug a

featherwing on top. But its a little bulky

Soldering in Plain Headers

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 18 of 87

https://learn.adafruit.com/assets/30199
https://learn.adafruit.com/assets/30200

Prepare the header strip:
Cut the strip to length if necessary. It will be easier to

solder if you insert it into a breadboard - long pins down

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 19 of 87

https://learn.adafruit.com/assets/30183

Add the breakout board:
Place the breakout board over the pins so that the short

pins poke through the breakout pads

And Solder!
Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to
Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 20 of 87

https://learn.adafruit.com/assets/30184
https://learn.adafruit.com/assets/30185
https://learn.adafruit.com/assets/30186
http://learn.adafruit.com/adafruit-guide-excellent-soldering

Solder the other strip as well.

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 21 of 87

https://learn.adafruit.com/assets/30187
https://learn.adafruit.com/assets/30188
https://learn.adafruit.com/assets/30189

You're done! Check your solder joints visually and

continue onto the next steps

Soldering on Female Header

Tape In Place
For sockets you'll want to tape them in place so when

you flip over the board they don't fall out

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 22 of 87

https://learn.adafruit.com/assets/30190
https://learn.adafruit.com/assets/30203

Flip & Tack Solder
After flipping over, solder one or two points on each

strip, to 'tack' the header in place

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 23 of 87

https://learn.adafruit.com/assets/30204
https://learn.adafruit.com/assets/30205
https://learn.adafruit.com/assets/30206

And Solder!
Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to
Excellent Soldering (https://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 24 of 87

https://learn.adafruit.com/assets/30207
https://learn.adafruit.com/assets/30208
https://learn.adafruit.com/assets/30209
http://learn.adafruit.com/adafruit-guide-excellent-soldering

You're done! Check your solder joints visually and

continue onto the next steps

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 25 of 87

https://learn.adafruit.com/assets/30210
https://learn.adafruit.com/assets/30211

Native Installation (OS X)
Mynewt relies on two command line utilities (newt and newtmgr), both of which are described elsewhere in this
learning guide, as well as the presence of an ARM cross-compiling toolchain (arm-none-eabi-gcc , etc.).

Both of these need to be installed and available on your system to work with Mynewt projects.

Install newt and newtmgr Binaries

Binary versions of the command-line tools are available from Apache.

Before you start, you will need to add the runtimeco/homebrew-mynewt 'tap' to brew, which can be done as follows:

Install newt

The full setup guide is available here: http://mynewt.apache.org/newt/install/newt_mac

You can test the install with:

Install newtmgr

The full setup guide is available here: http://mynewt.apache.org/newtmgr/install_mac/

You can test the install with:

$ brew tap runtimeco/homebrew-mynewt
$ brew update

$ brew install mynewt-newt
==> Installing mynewt-newt from runtimeco/mynewt
==> Downloading https://github.com/runtimeco/binary-releases/raw/master/mynewt-newt-tools_1.1.0/mynewt-newt-1.1.0.sierra.bottle.tar.gz
==> Downloading from https://raw.githubusercontent.com/runtimeco/binary-releases/master/mynewt-newt-tools_1.1.0/mynewt-newt-1.1.0.sierra.bottle.tar.gz
100.0%
==> Pouring mynewt-newt-1.1.0.sierra.bottle.tar.gz
/usr/local/Cellar/mynewt-newt/1.1.0: 3 files, 10.5MB

$newt version
Apache Newt version: 1.1.0

$ brew install mynewt-newtmgr
==> Installing mynewt-newtmgr from runtimeco/mynewt
==> Downloading https://github.com/runtimeco/binary-releases/raw/master/mynewt-newt-tools_1.1.0/mynewt-newtmgr-1.1.0.sierra.bottle.tar.gz
==> Downloading from https://raw.githubusercontent.com/runtimeco/binary-releases/master/mynewt-newt-tools_1.1.0/mynewt-newtmgr-1.1.0.sierra.bottle.tar.gz
100.0%
==> Pouring mynewt-newtmgr-1.1.0.sierra.bottle.tar.gz
/usr/local/Cellar/mynewt-newtmgr/1.1.0: 3 files, 17MB

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 26 of 87

http://mynewt.apache.org/newt/install/newt_mac/
http://mynewt.apache.org/newtmgr/install_mac/

Install an ARM Cross-Compiling Toolchain

In order to build and debug ARM binaries, you will also need to install a cross-compiling toolchain targeting the ARM
architecture.

Thankfully, pre-built binaries are also available in brew (used to install newt and newtmgr), as described in the setup
guide below:

You can test the installation with the following command (making sure that the version listed is 4.9!):

$ newtmgr help
Newtmgr helps you manage remote devices running the Mynewt OS

Usage:
 newtmgr [flags]
 newtmgr [command]

Available Commands:
 config Read or write a config value on a device
 conn Manage newtmgr connection profiles
 crash Send a crash command to a device
 datetime Manage datetime on a device
 echo Send data to a device and display the echoed back data
 fs Access files on a device
 help Help about any command
 image Manage images on a device
 log Manage logs on a device
 mpstat Read mempool statistics from a device
 reset Perform a soft reset of a device
 run Run test procedures on a device
 stat Read statistics from a device
 taskstat Read task statistics from a device

Flags:
 -c, --conn string connection profile to use
 -h, --help help for newtmgr
 -l, --loglevel string log level to use (default "info")
 --name string name of target BLE device; overrides profile setting
 -t, --timeout float timeout in seconds (partial seconds allowed) (default 10)
 -r, --tries int total number of tries in case of timeout (default 1)

Use "newtmgr [command] --help" for more information about a command.

$ brew tap PX4/homebrew-px4
$ brew update
$ brew install gcc-arm-none-eabi-49

$ arm-none-eabi-gcc --version
arm-none-eabi-gcc (GNU Tools for ARM Embedded Processors) 4.9.3 20150529 (release) [ARM/embedded-4_9-branch revision
Copyright (C) 2014 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 27 of 87

Optional: Install the OpenOCD Debugger

If you wish to debug or flash your projects with a Segger J-Link, you will also need to install the OpenOCD debug tool
via the following steps:

If you see one of these errors:

Library not loaded: /usr/local/lib/libusb-0.1.4.dylib
Run: brew install libusb-compat

Library not loaded: /usr/local/opt/libftdi/lib/libftdi1.2.dylib
Run: brew install libftdi

Library not loaded: /usr/local/lib/libhidapi.0.dylib
Run: brew install hidapi

Make sure you have at least version 0.10.0, which can be verified with the following command:

Optional: Install Segger J-Link Drivers

If you wish to use the newt load or newt debug commands and a Segger J-Link, you will need to install the Segger J-
Link drivers as well.

You will need to go to the Segger J-Link Downloads page and download the 'J-Link Software and Documentation
pack for MacOSX' installer:

Once downloader, run the installer and the JLinkExe and related J-Link commands that Mynewt relies on will be
available from the command-line.

Optional: Install minicom

Much of the interaction with your Mynewt device will happen over the serial port, including working with Shell-based
commands on your device.

$ brew install openocd

$ openocd --version
Open On-Chip Debugger 0.10.0
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 28 of 87

https://www.segger.com/downloads/jlink

A relatively easy to use command line application to work with serial port connections is minicom, which is used
throughout this learning guide. It can be installed from the command-line with the following command:

You can establish a serial connection via minicom with the following command (adjusting the /dev/tty device name as
appropriate):

$ brew install minicom

$ minicom -D /dev/tty.SLAB_USBtoUART

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 29 of 87

Native Installation (Linux)
Mynewt relies on two command line utilities (newt and newtmgr), both of which are described elsewhere in this
learning guide, as well as the presence of an ARM cross-compiling toolchain (arm-none-eabi-gcc , etc.).

Both of these need to be installed and available on your system to work with Mynewt projects.

Install newt and newtmgr Binaries

Binary versions of the command-line tools are available from Apache.

The full setup guide is available here: http://mynewt.apache.org/newt/install/newt_linux/

Manual newt Installation

On most Debian-based systems, the easiest route will be to manually install the pre-built newt binary from the
distribution package as follows:

Manual newtmgr Installation

Similarly, to install newtmgr you can run the following commands:

Install an ARM Cross-Compiling Toolchain

In order to build and debug ARM binaries, you will also need to install a cross-compiling toolchain targeting the ARM
architecture.

Thankfully, pre-built binaries are available, as described in the setup guide below:

Optional: Install the OpenOCD Debugger (Segger J-Link)

If you wish to debug or flash your projects with a Segger J-Link, you will also need to install the OpenOCD debug tool
via the following steps:

1. Download the binary tarball for Linux
$ wget https://github.com/runtimeco/openocd-binaries/raw/master/openocd-bin-0.10.0-Linux.tgz

2. Change to the root directory: $ cd /

3. Untar the tarball and install into /usr/local/bin. You will need to replace ~/Downloads with the directory that the

$ wget https://raw.githubusercontent.com/runtimeco/debian-mynewt/master/pool/main/n/newt/newt_1.1.0-1_amd64.deb
$ sudo dpkg -i newt_1.1.0-1_amd64.deb

$ wget https://raw.githubusercontent.com/runtimeco/debian-mynewt/master/pool/main/n/newtmgr/newtmgr_1.1.0-1_amd64.deb
$ sudo dpkg -i newtmgr_1.1.0-1_amd64.deb

$ sudo apt-get remove binutils-arm-none-eabi gcc-arm-none-eabi
$ sudo add-apt-repository ppa:team-gcc-arm-embedded/ppa
$ sudo apt-get update
$ sudo apt-get install gcc-arm-none-eabi

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 30 of 87

http://mynewt.apache.org/newt/install/newt_linux/
https://github.com/runtimeco/openocd-binaries/raw/master/openocd-bin-0.10.0-Linux.tgz

tarball is downloaded to:
$ sudo tar -xpf ~/Downloads/openocd-bin-0.10.0-Linux.tgz

Note: You must specify the -p option for the tar command.
4. Check the OpenOCD version you are using:

You should see version: 0.10.0.

If you see any of these error messages:

openocd: error while loading shared libraries: libhidapi-hidraw.so.0: cannot open shared object file: No such file
or directory
openocd: error while loading shared libraries: libusb-1.0.so.0: cannot open shared object file: No such file or
directory

run the following command to install the libraries:

Optional: Install Segger J-Link Drivers

If you wish to use the newt load or newt debug commands and a Segger J-Link, you will need to install the Segger J-
Link drivers as well.

On Ubuntu systems, you will need to go to the Segger J-Link Downloads page and download an appropriate binary
package:

For 32-bit systems download:
J-Link Software and Documentation pack for Linux, DEB Installer, 32-bit
For 64-bit systems download:
J-Link Software and Documentation pack for Linux, DEB Installer, 64-bit

Once you have the file on your system, install the package via dpkg as follows (varying the file for the version of
architecture you are using):

$ which openocd
/usr/local/bin/openocd
$openocd -v
Open On-Chip Debugger 0.10.0
Licensed under GNU GPL v2
For bug reports, read
http://openocd.org/doc/doxygen/bugs.html

$ sudo apt-get install libhidapi-dev:i386

$ sudo dpkg -i JLink_Linux_V618a_x86_64.deb
Selecting previously unselected package jlink.
(Reading database ... 175450 files and directories currently installed.)
Preparing to unpack JLink_Linux_V618a_x86_64.deb ...
Removing /opt/SEGGER/JLink ...
/opt/SEGGER/JLink not found (OK)
Unpacking jlink (6.18.1) ...
Setting up jlink (6.18.1) ...

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 31 of 87

https://www.segger.com/downloads/jlink

Optional: Install minicom

Much of the interaction with your Mynewt device will happen over the serial port, including working with Shell-based
commands on your device.

A relatively easy to use command line application to work with serial port connections is minicom, which is used
throughout this learning guide. It can be installed from the command-line with the following command:

You can establish a serial connection via minicom with the following command (adjusting the /dev/tty device name as
appropriate):

$ sudo apt-get install minicom

$ sudo minicom -D /dev/ttyUSB0

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 32 of 87

Native Installation (Win)
Mynewt relies on two command line utilities (newt and newtmgr), both of which are described elsewhere in this
learning guide, as well as the presence of an ARM cross-compiling toolchain (arm-none-eabi-gcc , etc.).

Both of these need to be installed and available on your system to work with Mynewt projects.

NOTE: The official Mynewt documention for setting devices up on Windows is available
here: https://mynewt.apache.org/latest/newt/install/newt_windows/

Cut auto-reset trace

Windows serial has a somewhat annoying thing it does where it toggles the DTR/RTS lines when you open a serial
port. This will make debugging impossible since you keep resetting the board. Before you continue you must cut the
trace-jumper on the bottom of the board:

Newt

You can follow the instructions https://mynewt.apache.org/v1_0_0/newt/install/newt_windows/ for installing newt on
windows via mingw.

You will need to install go

Our guide on Mingw and git installation may be useful!

Setup Go Path

$ cd $HOME
$ mkdir -p dev/go
$ cd dev/go
$ export GOPATH=`pwd`

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 33 of 87

https://mynewt.apache.org/latest/newt/install/newt_windows/
https://mynewt.apache.org/v1_0_0/newt/install/newt_windows/
https://golang.org/doc/install
file:///windows-tools-for-the-electrical-engineer/git-plus-command-line-tools

Add the following export statements to your ~/.bash_profile file and source the file:

export GOPATH=$HOME/dev/go
export PATH=$GOPATH/bin:$PATH

Download the newt package source and install the tool:

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 34 of 87

$cd $GOPATH
$go get mynewt.apache.org/newt/newt
$cd $GOPATH/src/mynewt.apache.org/newt
$ls
DISCLAIMER RELEASE_NOTES.md util
INSTALLING.md build.sh viper
LICENSE newt yaml
NOTICE newtmgr
README.md newtvm

Check that the newt tool is installed and it is in your path:

$ls $GOPATH/bin/newt
~/dev/go/bin/newt
$which newt
~/dev/go/bin/newt
$ newt version
Apache Newt (incubating) version: 1.0.0-dev (this version # may be different)

Install newtmgr Binaries

Binary versions of the command-line tools are available from Apache. You can follow their installation guide here.

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 35 of 87

https://mynewt.apache.org/latest/newtmgr/install_windows/

Download the latest binaries from
https://raw.githubusercontent.com/runtimeco/binary-releases/master/mynewt-newt-
tools_1.1.0/newtmgr_1_1_0_windows_amd64.tar.gz

Uncompess and put it into your $GOPATH - ~/dev/go

You can test it by running newtmgr from the shell

ARM Cross-Compiler

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 36 of 87

You will also need an cross-compiling toolchain for the ARM architecture, specifically GCC 4.9, since newt will call arm-
none-eabi-gcc from the command line.

For details on installing this see the official Mynewt documentation
here: https://mynewt.apache.org/latest/os/get_started/cross_tools/

Download GCC for ARM 4.9 2015 Q2 for

Windows 32-bit

https://adafru.it/yBq

NOTE: arm-none-eabi-gcc also needs to be available in the system PATH variable to work with newt!

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 37 of 87

https://launchpad.net/gcc-arm-embedded/4.9/4.9-2015-q2-update/+download/gcc-arm-none-eabi-4_9-2015q2-20150609-win32.exe
https://mynewt.apache.org/latest/os/get_started/cross_tools/
https://launchpad.net/gcc-arm-embedded/4.9/4.9-2015-q2-update/+download/gcc-arm-none-eabi-4_9-2015q2-20150609-win32.exe

Apache Mynewt Tools
Standard Tools

There are two main tools used to interact with Mynewt devices:

1. newt: Build system and project management tool
2. newtmgr: Field management tool for deployed devices

Consult the dedicated tool pages for details on how to setup and use these two important tools.

Adafruit Tools

In addition to the default system tools, Adafruit maintains an iOS app called Adafruit Mynewt Manager that can be
useful to monitor and work with deployed devices via your mobile phone.

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 38 of 87

file:///adafruit-nrf52-pro-feather/newt-tool
file:///adafruit-nrf52-pro-feather/newtmgr
file:///adafruit-nrf52-pro-feather/adafruit-mynewt-manager

newt
newt is a build and project management tool that hides most of the messy details of creating, building and debugging
mynewt projects. With newt, you don't need to worry about makefiles, compiler flags, debug config settings, and library
versions or updates. The details are elegantly hidden behind the easy to use 'newt' wrapper.

For full details on newt and the entire command set see the official newt documentation.

Installing newt

For details on installing the newt tool on your operating system of choice see:

OS X Installation: http://mynewt.apache.org/newt/install/newt_mac/
Linux Installation: http://mynewt.apache.org/newt/install/newt_linux/
Windows Installation: http://mynewt.apache.org/newt/install/newt_windows/

Common newt Commands

Please consult the official newt documentation for details on every command, but the most commonly used commands
are detailed below:

newt build <target_name>

This command will build a firmware image for the specified target name, and will handle things like the makefile
generation and any compiler parameters and file inclusions required by the target.

Full documentation: http://mynewt.apache.org/newt/command_list/newt_build/

newt create-image <target_name> <version>

This command assigns a version number to the image, and can also be used to optionally cryptographically sign
images with an appropriate .pem key file.

Full documentation: http://mynewt.apache.org/newt/command_list/newt_create_image/

newt load <target_name>

This command will use a Segger J-Link (if you have one connected) to flash the version controlled .img file to the
device.

$ newt build first
Building target targets/first
...
Target successfully built: targets/first

$ newt create-image first 1.2.3
App image succesfully generated: [PATH]/bin/targets/first/app/apps/first/first.img

Make sure you run 'newt create-image' on the firmware image before loading it to the device, or the firmware
will be rejected by the bootloader which verifies all firmware at startup!

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 39 of 87

http://mynewt.apache.org/newt/newt_intro/
http://mynewt.apache.org/newt/install/newt_mac/
http://mynewt.apache.org/newt/install/newt_linux/
http://mynewt.apache.org/newt/install/newt_windows/
http://mynewt.apache.org/newt/newt_intro/
http://mynewt.apache.org/newt/command_list/newt_build/
http://mynewt.apache.org/newt/command_list/newt_create_image/

Full documentation: http://mynewt.apache.org/newt/command_list/newt_load/

newt size <target_name>

This command will give you detailed information on the flash and SRAM usage of your firmware, and can be helpful
when debugging or when tight on space.

Full documentation: http://mynewt.apache.org/newt/command_list/newt_size/

newt target show

$ newt load first
Loading app image into slot 1

$ newt size first
Size of Application Image: app
 FLASH RAM
 59 246 *fill*
 32 0 apps_first.a
 1404 104 boot_bootutil.a
 426 26 boot_split.a
 1236 0 crypto_mbedtls.a
 492 0 encoding_base64.a
 1228 0 encoding_cborattr.a
 2912 0 encoding_tinycbor.a
 540 496 hw_bsp_ada_feather_nrf52.a
 64 0 hw_cmsis-core.a
 256 0 hw_drivers_uart_uart_hal.a
 392 0 hw_hal.a
 3744 72 hw_mcu_nordic_nrf52xxx.a
 7316 8233 kernel_os.a
 2856 44 libc_baselibc.a
 2416 24 mgmt_imgmgr.a
 220 20 mgmt_mgmt.a
 884 100 mgmt_newtmgr.a
 1401 44 mgmt_newtmgr_nmgr_os.a
 136 32 mgmt_newtmgr_transport_nmgr_shell.a
 1791 37 sys_config.a
 2203 100 sys_console_full.a
 544 128 sys_flash_map.a
 3171 90 sys_log_full.a
 408 12 sys_mfg.a
 752 76 sys_reboot.a
 5324 774 sys_shell.a
 1385 73 sys_stats_full.a
 32 5 sys_sysinit.a
 1676 0 time_datetime.a
 556 0 util_crc.a
 124 0 util_mem.a
 128 0 first-sysinit-app.a
 1492 0 libgcc.a

objsize
 text data bss dec hex filename
 47568 316 10020 57904 e230 [PATH]/bin/targets/first/app/apps/first/first.elf

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 40 of 87

http://mynewt.apache.org/newt/command_list/newt_load/
http://mynewt.apache.org/newt/command_list/newt_size/

This will give you a list of all targets defined in your project, and some basic details about them.

Full documentation: http://mynewt.apache.org/newt/command_list/newt_target/

$ newt target show
targets/first
 app=apps/first
 bsp=@apache-mynewt-core/hw/bsp/ada_feather_nrf52
 build_profile=debug
targets/my_blinky_sim
 app=apps/blinky
 bsp=@apache-mynewt-core/hw/bsp/native
 build_profile=debug

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 41 of 87

http://mynewt.apache.org/newt/command_list/newt_target/

newtmgr
newtmgr is an image management tool that can be used to interact with the bootloader and images on the device. For
full details on the newtmgr tool and the entire command set see the official newtmgr documentation.

Installing newtmgr

For details on installing the newtmgr tool on your operating system of choice see:

OS X Installation: http://mynewt.apache.org/newtmgr/install_mac/
Linux Installation: http://mynewt.apache.org/newtmgr/install_linux/
Windows Installation: http://mynewt.apache.org/newtmgr/install_windows/

Connection Profiles

The newtmgr tool works with connection profiles, such as serial or ble, depending on how you wish to communicate
with the device under test.

Before you can use newtmgr you will need to setup at least one connection profile, as described below:

Adding a Serial Connection Profile

Or, on windows:

Listing Existing Profiles

You can get a list of all defined connection profiles via:

Test the Serial Connection Profile

You can test the connection profile with the ' image list ' command, which will list any application images present in flash
memory:

$ newtmgr conn add serial1 type=serial connstring=/dev/tty.SLAB_USBtoUART

$ newtmgr conn add serial1 type=serial connstring=COM14

$ newtmgr conn show
Connection profiles:
 serial1: type=serial, connstring='/dev/tty.SLAB_USBtoUART'

$ newtmgr -c serial1 image list
Images:
 slot=0
 version: 0.1.0
 bootable: true
 flags: active confirmed
 hash: be52a255c25546dacc497d62faea910459903a1c1916ce831697d40fc2c20689
Split status: N/A (0)

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 42 of 87

http://mynewt.apache.org/newtmgr/overview/
http://mynewt.apache.org/newtmgr/install_mac/
http://mynewt.apache.org/newtmgr/install_linux/
http://mynewt.apache.org/newtmgr/install_windows/

Common newtmgr Commands

The following commands are commonly used when doing day to day development and debugging with Mynewt based
devices:

Display Scheduler Task Activity via 'taskstat'

You can also test the connection with newtmgr using the taskstat command, which will list some basic statistics about
the tasks running in the task manager.

Enter the following command:

Which should give you the following task statistics (output will vary depending on the Mynewt application that is
running at the time):

Uploading Application Images with newtmgr

If you don't have a Segger J-Link or similar debugger, the newtmgr tool can be used to upload an application image to
the secondary bank of flash memory, and then switch application images during the next reset. This allows you to
perform field updates over an inexpensive serial connection with no external HW required.

1. Build the Target Application (newt build)

The first step is of course to build the target application that you wish to deploy. The default bleuart project is used in
this case:

2. Sign and Version the Image (newt create-image)

You then need to 'sign' the image you just built with a version number and meta data used to validate the image when
flashing, which is done via the create-image command:

The image shown above is the default image that the nRF52 Pro ships with

$ newtmgr -c serial1 taskstat

 task pri tid runtime csw stksz stkuse last_checkin next_checkin
 ble_ll 0 2 21 4381 80 58 0 0
 bleuart 5 3 0 12030 256 31 0 0
 idle 255 0 11980 16292 64 26 0 0
 main 127 1 0 27 1024 210 0 0

$ newt build bleuart
Building target targets/bleuart
...
Target successfully built: targets/bleuart

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 43 of 87

https://github.com/adafruit/Adafruit_Mynewt/tree/master/apps/bleuart

3. Upload the Image (newtmgr image upload)

Now that we have a signed and versioned firmware image, we can copy the image to bank 1 of flash memory using the
serial bootloader and the newtmgr tool:

At this point, you can see that there are two images stored on the device in two different flash banks, the original 0.1.0
image that the board ships with, and the new 0.2.0 image we just built, signed and uploaded:

4. Test the Image Upload (newtmgr image test [hash])

Now that the image has been uploaded successfully to the secondary bank of flash memory, we need to tell the
system to 'test' the image during the next reset.

What the test command will do is check the signature of the image, and then try to switch the two flash banks so that
the old application (0.1.0) is in the secondary flash bank, and the new application (0.2.0) is in the primary bank.

This happens at reset, and will cause a 15-20 second delay as the flash writes are happening, so be sure to wait for
the testing process to complete before interacting or interferring with the device!

$ newt create-image bleuart 0.2.0
App image succesfully generated: [PATH]/bin/targets/bleuart/app/apps/bleuart/bleuart.img

Pay attention to the .img output filename since you will need this full path in the next step!

$ newtmgr -c serial1 image upload [PATH]/bin/targets/bleuart/app/apps/bleuart/bleuart.img
353
704
...
157426
157612
Done

$ newtmgr -c serial1 image list
Images:
 slot=0
 version: 0.1.0
 bootable: true
 flags: active confirmed
 hash: be52a255c25546dacc497d62faea910459903a1c1916ce831697d40fc2c20689
 slot=1
 version: 0.2.0
 bootable: true
 flags:
 hash: 87276847693699896f68b3c26d378648cace2900db4145cd5ade6049ac5ec15a
Split status: N/A (0)

Pay attention to the 'flags' field, which indicates the state of images on the system. This value will change as
we run through the update process.

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 44 of 87

You can issue a test (and flash bank switch) request as follows, using the hash value from the image list command
above:

5. Reset to Perform the Test and Image Bank Switch (newtmgr reset)

For the flash bank switch and test procedure to complete, you must reset the device, which can be done from the
command line as follows:

If you run the image list command again you will see that the banks and flags values have changed, with version 0.1.0
in the secondary bank and it's status set to 'confirmed':

6. Confirm the Image Switch (newtmgr image confirm)

$ newtmgr -c serial1 image test 87276847693699896f68b3c26d378648cace2900db4145cd5ade6049ac5ec15a
Images:
 slot=0
 version: 0.1.0
 bootable: true
 flags: active confirmed
 hash: be52a255c25546dacc497d62faea910459903a1c1916ce831697d40fc2c20689
 slot=1
 version: 0.2.0
 bootable: true
 flags: pending
 hash: 87276847693699896f68b3c26d378648cace2900db4145cd5ade6049ac5ec15a
Split status: N/A (0)

Notice that the 0.2.0 image flag has been changed to PENDING, which means a test and flash bank switch is
pending on the next reset!

$ newtmgr -c serial1 reset
Done

Be sure to wait at least 20 seconds after issuing the reset command, since the flash write takes 15-20
seconds to complete and the device will appear unresponsive during the update process!

$ newtmgr -c serial1 image list
Images:
 slot=0
 version: 0.2.0
 bootable: true
 flags: active
 hash: 87276847693699896f68b3c26d378648cace2900db4145cd5ade6049ac5ec15a
 slot=1
 version: 0.1.0
 bootable: true
 flags: confirmed
 hash: be52a255c25546dacc497d62faea910459903a1c1916ce831697d40fc2c20689
Split status: N/A (0)

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 45 of 87

6. Confirm the Image Switch (newtmgr image confirm)

The final step is to 'confirm' the image update process to make it permanent, which is done via the image confirm sub-
command:

If you check the flags values again, you will see that version 0.2.0 is now 'confirmed' and will continue to execute every
time you reset the device:

Display Internal Statistics

Mynewt has an internal statistics system that is very useful when debugging issues in the field or during development.
You can defined individual statistics fields, and increment the values at appropriate moments, and access these from
the command-line with the newtmgr stat command set.

List all Statistic Groups

$ newtmgr -c serial1 image confirm

As of newtmgr 1.1.0 the 'confirm' command will always return "Error: 1", but the confirm process does work, as
verified with the image list command below!

$ newtmgr -c serial1 image list
Images:
 slot=0
 version: 0.2.0
 bootable: true
 flags: active confirmed
 hash: 87276847693699896f68b3c26d378648cace2900db4145cd5ade6049ac5ec15a
 slot=1
 version: 0.1.0
 bootable: true
 flags:
 hash: be52a255c25546dacc497d62faea910459903a1c1916ce831697d40fc2c20689
Split status: N/A (0)

If you reset without confirming, the device will revert to the original (0.1.0) image!

Note: You can optionally skip the 'test + reset' phase, and go directly to confirming an image after the upload
is finished by using 'newtmgr -c serial1 confirm [hash]' with the hash of the image to finalize. This is a more
dangerous choice, but the option is there if you wish to save some time.

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 46 of 87

List all Values in a Statistic Group

$ newtmgr -c serial1 stat list
stat groups:
 ble_att
 ble_gap
 ble_gattc
 ble_gatts
 ble_hs
 ble_l2cap
 ble_ll
 ble_ll_conn
 ble_phy
 ble_uart
 nffs_stats
 stat

$ newtmgr -c serial1 stat ble_phy
stat group: ble_phy
 8310 phy_isrs
 0 radio_state_errs
 15 rx_aborts
 0 rx_crc_err
 0 rx_hw_err
 0 rx_late
 15 rx_starts
 0 rx_valid
 265440 tx_bytes
 0 tx_fail
 8295 tx_good
 0 tx_hw_err
 0 tx_late

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 47 of 87

Adafruit Mynewt Manager

To make it easier to work with Mynewt based devices, Adafruit has published a free utility for iOS (with Android
support planned in the future) that can perform the following tasks:

View live updates of the tasks present in the task scheduler
View live updates of any statistics defined in the firmware
Send BLE UART text in both directions if the BLE UART service is present
Perform firmware updates over the air

Getting the Application

You can get the application from the Apple iTunes App Store searching for 'Adafruit Mynewt'.

Please note that this app requires certain features to be available in the active firmware image, specifically
BLE based newtmgr support. We suggest using the 'bleuart' app in Adafruit_Mynewt as a starting point for
any app where you plan to use Adafruit Mynewt Manager!

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 48 of 87

https://itunes.apple.com/app/adafruit-mynewt-manager/id1272085812?mt=8

Source Code

The Swift source code for Adafruit Mynewt Manager is available on Github at the following URL:

Browse Adafruit_Newtmgr_Swift on Github

https://adafru.it/yCM

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 49 of 87

https://github.com/adafruit/Adafruit_Newtmgr_Swift

Apache Mynewt Applications
This section contains a guide on creating a progressively more complex application in Mynewt, starting with the
absolute basics and adding useful features one by one.

The individual pages can be references in isolation, but the example code builds up from one example to the next in
chronological order.

Create a New Project: This page shows how to generate a new project, and add a custom application and build
target to the project.
Adding Tasks: Add a custom task to the task scheduler
Adding Shell Commands: Add a custom shell command to the serial-based console
Adding Statistics: Add custom statistics to track the internal state of the system in an easy to monitor fashion

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 50 of 87

file:///adafruit-nrf52-pro-feather/create-a-new-project
file:///adafruit-nrf52-pro-feather/adding-tasks
file:///adafruit-nrf52-pro-feather/adding-shell-commands
file:///adafruit-nrf52-pro-feather/adding-statistics

Create a New Project
This page makes the following assumptions:

1. You have already installed the newt and newtmgr tools on your system (see the Native Installation pages in this
learning guide for details)

2. The various build tools (arm-none-eabi-gcc , etc.) are available from the command-line
3. You are using Mynewt version 1.1 for the tools and core codebase

This project will have the following features:

newtmgr support will be enabled over the serial port
Shell support will be included, allowing you to enter commands over the serial connection

Create a Project Skeleton

The first thing to do is create a project skeleton via the following command:

This should give you the following output:

Download Project Dependencies

Next download the project dependencies from the associated repos.

Since this is a new project, only apache-mynewt-core will be downloaded:

Depending on your system state, this should give you the following output:

We'll use 'myproject' as a project name here, but you are free to change it to something else

$ newt new myproject

Downloading project skeleton from apache/mynewt-blinky...
Installing skeleton in myproject...
Project myproject successfully created.

$ cd myproject
$ newt install -v

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 51 of 87

This should give you the following project structure:

Create a New Application

Now that you have a project skeleton, you can start adding applications to it.

A Mynewt app requires at least a main() function, a pkg.yml file, and a most of the time a syscfg.yml file, as well as a
new 'app' folder where the files should be stored.

To get started, create a new app folder as follows:

Newt create the core apps/first/pkg.yml file with the following text (for example via $ nano apps/first/pkg.yml , or using
your favorite text editor):

$ newt install -v
[apache-mynewt-core]:
Downloading repository description
Download successful!
Downloading repository mynewt-core (branch: master; commit: mynewt_1_1_0_tag) at https://github.com/apache/mynewt-core.git
Cloning into '/var/folders/86/hb2vp14n5_5_yvdz_z8w9x_c0000gn/T/newt-repo021712424'...
remote: Counting objects: 65349, done.
remote: Compressing objects: 100% (151/151), done.
remote: Total 65349 (delta 130), reused 162 (delta 95), pack-reused 65099
Receiving objects: 100% (65349/65349), 80.03 MiB | 1.94 MiB/s, done.
Resolving deltas: 100% (39656/39656), done.
Will create new branch mynewt_1_1_0_tag from tag tags/mynewt_1_1_0_tag
apache-mynewt-core successfully installed version 1.1.0-none

.
├── LICENSE
├── NOTICE
├── README.md
├── apps
│ └── blinky
│ ├── pkg.yml
│ └── src
├── project.state
├── project.yml
├── repos
│ └── apache-mynewt-core
└── targets
 ├── my_blinky_sim
 │ ├── pkg.yml
 │ └── target.yml
 └── unittest
 ├── pkg.yml
 └── target.yml

$ mkdir apps/first

We'll call this application 'first', but you can use any name you find appropriate

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 52 of 87

Next create a apps/first/syscfg.yml file with the following content (for example $ nano apps/first/syscfg.yml):

Finally create a apps/first/src/main.c file where the main source code will be stored:

This file lists the external dependencies for your project

pkg.name: apps/first
pkg.type: app

pkg.deps:
 - "@apache-mynewt-core/libc/baselibc"
 - "@apache-mynewt-core/kernel/os"
 - "@apache-mynewt-core/sys/sysinit"
 - "@apache-mynewt-core/sys/shell"
 - "@apache-mynewt-core/sys/console/full"
 - "@apache-mynewt-core/sys/log/full"
 - "@apache-mynewt-core/sys/stats/full"
 - "@apache-mynewt-core/hw/hal"
 - "@apache-mynewt-core/mgmt/imgmgr"
 - "@apache-mynewt-core/mgmt/newtmgr"
 - "@apache-mynewt-core/mgmt/newtmgr/transport/nmgr_shell"
 - "@apache-mynewt-core/boot/split"
 - "@apache-mynewt-core/boot/bootutil"

This file contains config settings for your application to control what features and used or enabled during the
build process

 syscfg.vals:
 # Use INFO log level to reduce code size. DEBUG is too large for nRF51.
 LOG_LEVEL: 1
 REBOOT_LOG_CONSOLE: 1

 # Enable the shell task.
 SHELL_TASK: 1

 # Include names for statistics.
 STATS_NAMES: 1

 # Enable shell commands.
 STATS_CLI: 1
 LOG_CLI: 1
 CONFIG_CLI: 1

 # Enable newtmgr commands.
 STATS_NEWTMGR: 1
 LOG_NEWTMGR: 1
 CONFIG_NEWTMGR: 1

$ mkdir -p apps/first/src
$ nano apps/first/src/main.c

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 53 of 87

... and enter the following code:

Create a New Target

Next, you need to create a new target that points to your app via the following command:

... and then configure the new target with the following mandatory fields:

1. Set the Target's app Field

Point the new target to the app we created above via:

2. Set the Target's bsp Field

Next set the bsp (board support package) for the new target, which indicates the HW that the app will be running on.

If you are using the Adafruit nRF52 Pro Feather this should be:

#include <assert.h>
#include <string.h>

#include "os/os.h"
#include "bsp/bsp.h"
#include "hal/hal_gpio.h"
#include "sysinit/sysinit.h"

int
main(int argc, char **argv)
{
 int rc;

 /* Initialize the OS */
 sysinit();

 /* Configure the LED GPIO as an output and HIGH (On) */
 hal_gpio_init_out(LED_BLINK_PIN, 1);

 while (1) {
 /* Run the event queue to process background events */
 os_eventq_run(os_eventq_dflt_get());
 }

 return rc;
}

$ newt target create first
Target targets/first successfully created

$ newt target set first app=apps/first
Target targets/first successfully set target.app to apps/first

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 54 of 87

3. Set the build_profile Field

Finally set the build profile for the new target (debug or optimized):

4. Test the Target Settings

You can review the target settings via the following command:

Final Project Structure

The final project structure should look like this:

Build and Flash the Target

Finally, you can build your target, pointing to the new application, and using the specified target BSP and build profile:

$ newt target set first bsp=@apache-mynewt-core/hw/bsp/ada_feather_nrf52
Target targets/first successfully set target.bsp to @apache-mynewt-core/hw/bsp/ada_feather_nrf52

$ newt target set first build_profile=debug
Target targets/first successfully set target.build_profile to debug

'my_blinky_sim' is an artifact of the default project creation process and can be ignored

$ newt target show first
targets/first
 app=apps/first
 bsp=@apache-mynewt-core/hw/bsp/ada_feather_nrf52
 build_profile=debug
targets/my_blinky_sim
 app=apps/blinky
 bsp=@apache-mynewt-core/hw/bsp/native
 build_profile=debug

apps/first
├── LICENSE
├── NOTICE
├── README.md
├── apps
│ └── blinky
│ ├── pkg.yml
│ └── src
│ └── main.c
├── pkg.yml
├── project.yml
├── src
│ └── main.c
└── syscfg.yml

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 55 of 87

Sign the Build with a Version Number

You can prepare the image to be flashed to the device with a mandatory version number and signing details via the
newt create-image command:

And finally you can flash the image via one of two methods:

Flash the Image via a Segger J-Link

With the J-Link connected to the nRF52, run the following command to flash the signed image:

Flash the Image via the Serial Port and newtmgr

For details on how to flash the image over newtmgr using only the serial port (no J-Link required), see Uploading
Application Images with newtmgr.

$ newt build first
Building target targets/first
Compiling repos/apache-mynewt-core/boot/bootutil/src/loader.c
...
Compiling repos/apache-mynewt-core/util/mem/src/mem.c
...
Archiving util_mem.a
Linking [PATH]/bin/targets/first/app/apps/first/first.elf
Target successfully built: targets/first

$ newt create-image first 0.1.5
App image succesfully generated: [PATH]/bin/targets/first/app/apps/first/first.img

This command assumes that you have the Segger J-Link drivers installed on your system, as described in the
Native Installation pages.

$ newt load first
Loading app image into slot 1

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 56 of 87

file:///adafruit-nrf52-pro-feather/newtmgr#uploading-application-images-with-newtmgr

Adding Tasks

A task (os_task) in Mynewt is made up of a task handler function, a task 'stack' which provide the block of memory that
will be used when executing the task, and a priority level.

Since Mynewt is a multitasking environment, tasks are also assigned a priority level, and at any given time the highest
priority task will run. When the highest priority task stops (waiting for an event, or when delayed in code) the next
highest priority task will fire, and so on until the scheduler gets down to the lowest priority task, usually called 'idle'
(which will be set by the kernel when the OS starts up).

Declaring a task, priority and stack size

In order to declare a task, you need to set the task's:

priority
stack size
and the name of the task handler that will be run when the task is active.

The task's priority can be from 1..255, where the higher the number the lower the priority.

The stack size is in units of os_stack_t , which is usually a 32-bit value, meaning a stack size of 64 (as shown in the
example below) is 256 bytes wide.

The task handler has the following signature: void my_task_func(void *arg)

Initializing a task

To initialize the task, you need to call the sysinit() function then add your task to the os via: os_task_init . This normally
takes place in the main loop, or in a dedicated function called inside main like init_tasks() .

os_task_init has the following signature and parameters:

struct os_task *t : A pointer to the os_task to initialize
const char *name : The public name to associate with this task, which will be visible in the shell, newtmgr, and
other reporting systems.
os_task_funct_t func : The function to execute when this task is active, which will have the following signature: void

my_task_handler(void *arg)

The official Mynewt 'Task' documentation is available at:
https://mynewt.apache.org/latest/os/core_os/task/task/

/* Define task stack and task object */
#define MY_TASK_PRIO (OS_TASK_PRI_HIGHEST)
#define MY_STACK_SIZE OS_STACK_ALIGN(64)
struct os_task my_task;
os_stack_t my_task_stack[MY_STACK_SIZE];

os_task_init(struct os_task *t, const char *name, os_task_func_t func,
 void *arg, uint8_t prio, os_time_t sanity_itvl,
 os_stack_t *stack_bottom, uint16_t stack_size)

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 57 of 87

https://mynewt.apache.org/latest/os/core_os/task/task/

void *arg : Optional arguments to pass into the task handler
uint8_t prio : The priority level for the task, lower = higher priority
os_time_t sanity_itvl : The time at which this task should check in with the sanity task. OS_WAIT_FOREVER means
never check in.
os_stack_t *stack_bottom : A pointer to the bottom of a task's stack.
uint16_t stack_size : The size of the task's stack (in os_stack_t units), which are usually 32-bits.

The following examples initialises a task matching the values declared earlier in this document:

Implementing the task handler

The last part of the system is the task handler, which will be called every time that the task is active (as determined by
the scheduler).

Task handlers are infinite loops that have an initial setup face, and then normally a while(1) loop that runs forever as
long as the task is active.

The following example initialises a GPIO pin as an output, setting the pin high. It then starts an infinite loop and toggles
the LED every second, sleeping between 1s intervals so that other tasks can run:

/* This is the main function for the project */
int main(void) {
 int rc;

 /* Initialize OS */
 os_init();

 /* Initialize the task */
 os_task_init(&my_task, "my_task", my_task_func, NULL, MY_TASK_PRIO,
 OS_WAIT_FOREVER, my_task_stack, MY_STACK_SIZE);

 /* Start the OS */
 os_start();

 /* os start should never return. If it does, this should be an error */
 assert(0);

 return rc;
}

Note that there are two parts to the task handler. An initial chunk of code that will be run once when the task
is initialized, then a 'while (1)' loop that will be run in repetition whenever the task has focus in the scheduler.

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 58 of 87

Task Delays

There are various ways that a task can be interrupted, such as delaying execution for a specific amount of time, waiting
for an event on an event queue, waiting for a semaphore, etc.

Delaying your tasks is important, because as long as your task is active, no tasks of lower priority will execute. As such,
it's important to manage your tasks as efficiently as possible to ensure that clock cycles are available for other tasks in
the system.

os_time_delay

The os_time_delay function is the easiest way to cause a delay in execution in your task. Simply specify a specific
number of ticks, and the scheduler will mark this task as inactive for the indicated delay.

Please note that os_time_delay uses system ticks, which may vary from one system to the next, so any delays should
be based on the OS_TICKS_PER_SECOND macro to remain portable.

Example: Updating apps/first/src/main.c

A simple example of adding a blinky task handler to apps/first can be implemented by updating apps/first/src/main.c

with the following code, and reflashing the firmware image:

static void
my_task_func(void *arg)
{
 hal_gpio_init_out(LED_BLINK_PIN, 1);

 while (1) {
 /* Wait one second */
 os_time_delay(OS_TICKS_PER_SEC * 1);

 /* Toggle the LED */
 hal_gpio_toggle(LED_BLINK_PIN);
 }
}

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 59 of 87

Checking Task Status

#include <assert.h>
#include <string.h>

#include "os/os.h"
#include "bsp/bsp.h"
#include "hal/hal_gpio.h"
#include "sysinit/sysinit.h"

/* Define task stack and task object */
#define LED_TASK_PRIO (100) /* 1 = highest, 255 = lowest */
#define LED_STACK_SIZE OS_STACK_ALIGN(64)
struct os_task led_task;
os_stack_t led_task_stack[LED_STACK_SIZE];

static void led_task_func(void *arg);

int
main(int argc, char **argv)
{
 int rc;

 /* Initialize the task */
 os_task_init(&led_task, "blinky", led_task_func, NULL,
 LED_TASK_PRIO, OS_WAIT_FOREVER, led_task_stack,
 LED_STACK_SIZE);

 /* Initialize the OS */
 sysinit();

 while (1) {
 /* Run the event queue to process background events */
 os_eventq_run(os_eventq_dflt_get());
 }

 return rc;
}

static void
led_task_func(void *arg)
{
 /* Configure the LED GPIO as an output and HIGH (On) */
 hal_gpio_init_out(LED_BLINK_PIN, 1);

 while (1) {
 /* Wait one second */
 os_time_delay(OS_TICKS_PER_SEC * 1);

 /* Toggle the LED */
 hal_gpio_toggle(LED_BLINK_PIN);
 }
}

You can vary the blinky rate by adjusting the delay in 'os_time_delay' in the task handler

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 60 of 87

You can verify the task status from the command line with the newtmgr taskstat command:

$ newtmgr -c serial1 taskstat
 task pri tid runtime csw stksz stkuse last_checkin next_checkin
 blinky 100 2 0 4 64 26 0 0
 idle 255 0 424 5 64 32 0 0
 main 127 1 0 3 1024 93 0 0

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 61 of 87

Adding Shell Commands

Mynewt includes a 'Shell' library that allows you to add an extensible command-line style interface to your applications.
You can implement custom commands that users can execute over a simple serial connection, and display formatted
text back to the end users.

Adding shell support

To add shell support to your app, make sure the following pkg.deps are defined in your pkg.yml file:

And in the syscfg.vals section of syscfg.yml add the following:

Adding a custom command handler

To add a new command handler use the following code snippets, placing the different sections at an appropriate place
in your code:

The official Shell documentation can be seen here: https://mynewt.apache.org/latest/os/modules/shell/shell/

pkg.deps:
 - "@apache-mynewt-core/sys/console/full"
 - "@apache-mynewt-core/sys/shell"
 - "@apache-mynewt-core/sys/sysinit"

syscfg.vals:
 # Enable the shell task.
 SHELL_TASK: 1

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 62 of 87

https://mynewt.apache.org/latest/os/modules/shell/shell/

Example: Updating apps/first/src/main.c

You can update apps/first with a custom shell command using the following code in main.c:

#include "console/console.h"
#include "shell/shell.h"

...

// Command handler prototype declaration
static int shell_test_cmd(int argc, char **argv);

// Shell command struct
static struct shell_cmd shell_test_cmd_struct = {
 .sc_cmd = "test",
 .sc_cmd_func = shell_test_cmd
};

...

// Implement your command handler
static int
shell_test_cmd(int argc, char **argv)
{
 console_printf("Test!\n");
 return 0;
}

...

// Call this before sysinit to register the command
#if MYNEWT_VAL(SHELL_TASK)
 shell_cmd_register(&shell_test_cmd_struct);
#endif

#include <assert.h>
#include <string.h>

#include "os/os.h"
#include "bsp/bsp.h"
#include "hal/hal_gpio.h"
#include "sysinit/sysinit.h"
#include "console/console.h"
#include "shell/shell.h"

/* Define task stack and task object */
#define LED_TASK_PRIO (100) /* 1 = highest, 255 = lowest */
#define LED_STACK_SIZE OS_STACK_ALIGN(64)
struct os_task led_task;
os_stack_t led_task_stack[LED_STACK_SIZE];

/* LED task handler prototype declaration */
static void led_task_func(void *arg);

/* Command handler prototype declaration */
static int shell_test_cmd(int argc, char **argv);

/* Shell command struct */

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 63 of 87

Testing the Shell Command

You can test the new 'test' shell command by connecting over serial:

/* Shell command struct */
static struct shell_cmd shell_test_cmd_struct = {
 .sc_cmd = "test",
 .sc_cmd_func = shell_test_cmd
};

int
main(int argc, char **argv)
{
 int rc;

 /* Initialize the task */
 os_task_init(&led_task, "blinky", led_task_func, NULL,
 LED_TASK_PRIO, OS_WAIT_FOREVER, led_task_stack,
 LED_STACK_SIZE);

 /* Call this before sysinit to register the command */
 #if MYNEWT_VAL(SHELL_TASK)
 shell_cmd_register(&shell_test_cmd_struct);
 #endif

 /* Initialize the OS */
 sysinit();

 while (1) {
 /* Run the event queue to process background events */
 os_eventq_run(os_eventq_dflt_get());
 }

 return rc;
}

/* Implement the 'test' command handler */
static int
shell_test_cmd(int argc, char **argv)
{
 console_printf("Test!\n");
 return 0;
}

static void
led_task_func(void *arg)
{
 /* Configure the LED GPIO as an output and HIGH (On) */
 hal_gpio_init_out(LED_BLINK_PIN, 1);

 while (1) {
 /* Wait one second */
 os_time_delay(OS_TICKS_PER_SEC * 1);

 /* Toggle the LED */
 hal_gpio_toggle(LED_BLINK_PIN);
 }
}

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 64 of 87

Once connected you can send the ' help ' command to get a list of valid shell commands, and then then 'test'

command which should display ' Test! ' in the shell:

$ minicom -D /dev/tty.SLAB_USBtoUART

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 65 of 87

Adding Statistics

Mynewt includes an internal statistics system where numeric values can be declared and incremented over time, then
accessed as a debug and analysis tool.

For example, every time a specific sensor is accessed, you can increment the sensor_reads statistic value by one
(assigning whatever variable name you want), and when a specific bug or condition occurs you can check the value to
see whether or how many times the sensor was accessed before the specific condition occurs.

You can also use statistics to verify the number of bytes sent and received over a specific peripheral to make sure
sensitive interrupt driven code is working well without having to stop the entire system.

Configuring Your App for Statistics

To enable statistics in your application, the following dependency needs to be present in pkg.yml :

To save flash space internally, statistics are referenced by number by default. If you wish to preserve the full name of
the individual statistics for easier debugging, then the following flag also needs to be added to the syscfg.yml file:

Optionally, if you wish to access statistics from the shell interface, you can also enable the ' stat ' command with the
following flag in syscfg.yml :

Adding Stats to your main.c File:

Stats requires the following header be present:

This will enable the use of the STATS* macros to define the stats layout, following the example below:

At compile time, this will resolve to the following structure:

Full documentation on statistics is available here: https://mynewt.apache.org/latest/os/modules/stats/stats/

pkg.deps:
 - "@apache-mynewt-core/sys/stats"

syscfg.vals:
 # Include names for statistics.
 STATS_NAMES: 1

syscfg.vals:
 STATS_CLI: 1

#include <stats/stats.h>

STATS_SECT_START(my_stat_section)
 STATS_SECT_ENTRY(attempt_stat)
 STATS_SECT_ENTRY(error_stat)
STATS_SECT_END

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 66 of 87

https://mynewt.apache.org/latest/os/modules/stats/stats/

You will also need to provide names for each field, regardless of WHETHER you have enabled naming support
via STATS_NAMES or not:

At compile time, this will resolve to the following structure:

Accessing the Stats in Your Code

You will need to declare a global variable somewhere to holds the stats data, using the model below:

If the global definition is is another file and you are referencing it elsewhere, you would declare this in the file where
you will modify locally:

Initializing the Stats

Before your stats can be used or accessed, they need to be initialised and registered.

You can initialise your stats entry as follows:

struct stats_my_stat_section {
 struct stats_hdr s_hdr;
 uint32_t sattempt_stat;
 uint32_t serror_stat;
};

Note that the field names need to match between the STATS_SECT_ENTRY name above and the
STATS_NAME entry below!

/* Define a few stats for querying */
STATS_NAME_START(my_stat_section)
 STATS_NAME(my_stat_section, attempt_stat)
 STATS_NAME(my_stat_section, error_stat)
STATS_NAME_END(my_stat_section)

struct stats_name_map g_stats_map_my_stat_section[] = {
 { __builtin_offsetof (struct stats_my_stat_section, sattempt_stat), "attempt_stat" },
 { __builtin_offsetof (struct stats_my_stat_section, serror_stat), "error_stat" },
};

STATS_SECT_DECL(my_stat_section) g_mystat;

extern STATS_SECT_DECL(my_stat_section) g_mystat;

The stats_init() and stats_register() function calls should occur AFTER the sysinit(); function!

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 67 of 87

For the stat size, you can use one of the following values:

STATS_SIZE_16 -- stats are 16 bits (wraps at 65536)
STATS_SIZE_32 -- stats are 32 bits (wraps at 4294967296)
STATS_SIZE_64 -- stats are 64-bits

You then need to register the stats entry so that you can access it, which is done via the following function call:

Updating the Stats Values

Incrementing

To increment the stats values, you can use the STATS_INC or STATS_INCN macros, as shown below:

To increment the value a specific number use STATIS_INCN :

Accessing Stats with the Console or newtmgr

Console Access

Assuming that you have enabled named access to stats via STATS_NAME_ENABLE you can access your stats from the
console via:

This will give you something resembling the following output:

rc = stats_init(
 STATS_HDR(g_mystat),
 STATS_SIZE_INIT_PARMS(g_mystat, STATS_SIZE_32),
 STATS_NAME_INIT_PARMS(my_stat_section));
assert(rc == 0);

NOTE: The name below is the name that you will use when accessing the stats via the console or via the
newtmgr stat command

rc = stats_register("my_stats", STATS_HDR(g_mystat));
assert(rc == 0);

STATS_INC(g_mystat, attempt_stat);
rc = do_task();
if(rc == ERR) {
 STATS_INC(g_mystat, error_stat);
}

STATS_INCN(g_mystat, attempt_stat, 5);

stat my_stats

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 68 of 87

If you don't have names enabled via STATS_NAME_ENABLE you would see something like this:

newtmgr Access

You can also access stats through newtmgr as follows:

Example: Adding Stats to apps/first/src/main.c

You can extend apps/first with custom stats by updating apps/first/src/main.c with the following code:

12274:attempt_stat: 3
12275:error_stat: 0

stat my_stats
29149:s0: 3
29150:s1: 0

$ newtmgr -c serial1 stat my_stats
Return Code = 0
Stats Name: my_stats
 attempt_stat: 0
 error_stat: 0

#include <assert.h>
#include <string.h>

#include "os/os.h"
#include "bsp/bsp.h"
#include "hal/hal_gpio.h"
#include "sysinit/sysinit.h"
#include "console/console.h"
#include "shell/shell.h"
#include "stats/stats.h"

/* Define task stack and task object */
#define LED_TASK_PRIO (100) /* 1 = highest, 255 = lowest */
#define LED_STACK_SIZE OS_STACK_ALIGN(64)
struct os_task led_task;
os_stack_t led_task_stack[LED_STACK_SIZE];

/* LED task handler prototype declaration */
static void led_task_func(void *arg);

/* Command handler prototype declaration */
static int shell_test_cmd(int argc, char **argv);

/* Shell command struct */
static struct shell_cmd shell_test_cmd_struct = {
 .sc_cmd = "test",
 .sc_cmd_func = shell_test_cmd
};

/* Define a custom stats group for querying */
STATS_SECT_START(led_stat_section)

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 69 of 87

 STATS_SECT_ENTRY(led_toggles)
STATS_SECT_END

/* Define a few stat name fields for querying */
STATS_NAME_START(led_stat_section)
 STATS_NAME(led_stat_section, led_toggles)
STATS_NAME_END(led_stat_section)

/* Add the global variable to access and increment stats */
STATS_SECT_DECL(led_stat_section) g_ledstats;

int
main(int argc, char **argv)
{
 int rc;

 /* Initialize the task */
 os_task_init(&led_task, "blinky", led_task_func, NULL,
 LED_TASK_PRIO, OS_WAIT_FOREVER, led_task_stack,
 LED_STACK_SIZE);

 /* Call this before sysinit to register the command */
 #if MYNEWT_VAL(SHELL_TASK)
 shell_cmd_register(&shell_test_cmd_struct);
 #endif

 /* Initialize the OS */
 sysinit();

 /* Initialise the custom stats section */
 rc = stats_init(
 STATS_HDR(g_ledstats),
 STATS_SIZE_INIT_PARMS(g_ledstats, STATS_SIZE_32),
 STATS_NAME_INIT_PARMS(led_stat_section));
 assert(rc == 0);

 /* Then register the custom section with the stats system */
 rc = stats_register("led_stats", STATS_HDR(g_ledstats));
 assert(rc == 0);

 while (1) {
 /* Run the event queue to process background events */
 os_eventq_run(os_eventq_dflt_get());
 }

 return rc;
}

/* Implement the 'test' command handler */
static int
shell_test_cmd(int argc, char **argv)
{
 console_printf("Test!\n");
 return 0;
}

static void
led_task_func(void *arg)
{
 /* Configure the LED GPIO as an output and HIGH (On) */

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 70 of 87

Monitoring via netwmgr

You can monitor the led_toggles value via newtmgr with the following command (where we can see that the LED had
been toggled 11 times to far in this case):

Monitoring via shell/console

Alternatively, you can connect to the shell (for example, via: $ minicom -D /dev/tty.USBtoUART) and run the stat led_stats

command to get the same value(s):

 /* Configure the LED GPIO as an output and HIGH (On) */
 hal_gpio_init_out(LED_BLINK_PIN, 1);

 while (1) {
 /* Wait one second */
 os_time_delay(OS_TICKS_PER_SEC * 1);

 /* Toggle the LED */
 hal_gpio_toggle(LED_BLINK_PIN);

 /* Increment the LED stat */
 STATS_INC(g_ledstats, led_toggles);
 }
}

$ newtmgr -c serial1 stat led_stats
stat group: led_stats
 11 led_toggles

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 71 of 87

Adding BLE UART Support
The easiest way to add BLE UART support is using the bleuart helper module that is part of Adafruit_Mynewt, an in
house Mynewt project that we created during product development.

If you wish to test a complete application that shows how to use BLE UART, you should start with the bleuart example
application, which exposes shell commands to work with BLE UART, as well as tracks the TX and RX byte count via
statistics, and works well with the Adafruit Mynewt Manager mobile application.

Browse the bleuart example application code

on Github

https://adafru.it/yAh

Mynewt Nimble (BLE Stack) Documentation

Mynewt's open source Bluetooth Low Energy stack is called nimble. Full documentation on number can be found via
the link below:

View Mynewt nimble documentation

https://adafru.it/yAV

This section will be expanded in the near future with details on working with BLE and BLE UART in Mynewt,
but at the moment we only have example code that we've written to get you started.

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 72 of 87

https://github.com/adafruit/Adafruit_Mynewt/tree/master/libs/bleuart
file:///adafruit-nrf52-pro-feather/adafruit-mynewt-repo
https://github.com/adafruit/Adafruit_Mynewt/tree/master/apps/bleuart
https://github.com/adafruit/Adafruit_Mynewt/tree/master/apps/bleuart
https://mynewt.apache.org/latest/network/ble/ble_intro/

Advanced Debugging
The pages in this section are for advanced users who need to debug remote or complex systems, and are aimed at
giving you a head start solving specific problems:

GDB Debugging: General overview of common GDB debugging commands and suggestions on how to debug
common problems via GDB
Command Line Debugging: Some common tricks to help debug issues from the command line
Field Debugging Tips: Advice on debugging crash dumps from devices in the field

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 73 of 87

file:///adafruit-nrf52-pro-feather/gdb-debugging
file:///adafruit-nrf52-pro-feather/command-line-debugging
file:///adafruit-nrf52-pro-feather/field-debugging-tips

GDB Debugging

The definitive guide to GDB is available here:
ftp://ftp.gnu.org/old-gnu/Manuals/gdb/html_chapter/gdb_toc.html

Starting the Debugger

You can start GDB (GNU Debugger) with newt with the following command, with a
JLink connected to the target device:

Optionally build and flash the image
$ newt build target_name
$ newt create-image target_name 0.0.0
$ newt load target_name

Start GDB
$ newt debug target_name

You can then start and stop code execution on the target MCU via:

(gbd) monitor halt

and

(gbd) monitor go

You can also start a fresh run of the code via:

(gbd) monitor reset
(gdb) c

You can check if the OS is running by executing the following code, which
will display the OS time counter:

(gdb) p/d g_os_time

Displaying Values

To display the current state of a struct or global variable, use the print
[name] (or p [name]) command.

Basic Example

The example below halts the processor and then prints a struct instance named
ble_phy_stats .

> Tip: You can optionally enable pretty printing via set print pretty on

GDB debugging will require a Segger JLink for the GDB Server and debug port access

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 74 of 87

(gdb) monitor halt
(gdb) set print pretty on
(gdb) print ble_phy_stats
$5 = {
 s_hdr = {
 s_name = 0x0,
 s_size = 0 '\000',
 s_cnt = 0 '\000',
 s_pad1 = 0,
 s_next = {
 stqe_next = 0x0
 }
 },
 sphy_isrs = 0,
 stx_good = 1,
 stx_fail = 0,
 stx_late = 0,
 stx_bytes = 27,
 srx_starts = 0,
 srx_aborts = 0,
 srx_valid = 0,
 srx_crc_err = 0,
 srx_late = 0,
 sno_bufs = 0,
 sradio_state_errs = 0,
 srx_hw_err = 0,
 stx_hw_err = 0
}

Formatting Display Values

You can also format the printed values with the following formatters:

x Regard as integer and display as hexadecimal
d Regard as integer and display as signed decimal
u Regard as integer and display as unsigned decimal
c Regard as integer and print as a char constant
f Regard as float and print in floating point syntax
t Print integer as binary
a Print as an address (hex plus offset). Useful to discover where an address is located (ex. p/a 0x12345 yields
$3 = 0x12345 <_initialize_vx+396>)

To print the BLE link layer stack (g_ble_ll_stack) in hex enter:

(gdb) p/x g_ble_ll_stack
$17 = {0xdeadbeef <repeats 22="" times="">, 0x20002568, 0x304, 0xe000e100, 0x100, 0x20001be4, 0x0, 0xffffffff
 0xffffffff, 0x20002204, 0x19f14, 0x20002218, 0x0, 0x20001e90, 0x10000000, 0x20002180, 0x354, 0xa0a3, 0x92b2
 0x61000000, 0x20001e8c, 0x200021d8, 0x0, 0x9657, 0x4, 0xffffffff, 0xffffffff, 0x1fff8000, 0x0, 0xa897,
 0x1fff8000, 0xffffffff, 0xffffffff, 0x1fff8000, 0x0, 0x0, 0x8, 0xde, 0x93c9, 0x0}

Displaying an Array of Values

You can display the contents of an array as follows:

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 75 of 87

(gdb) monitor halt
(gdb) set print pretty on
(gdb) print *array@len

Useful Mynewt/Nimble Structs and Fields

Some useful Mynewt or nimble fields to display can be seen below:

ble_phy_stats - PHY stats for traffic tracking
ble_ll_stats - Link layer stats
ble_ll_conn_stats - Connection stats
g_ble_ll_adv_sm - Advertising state machine
g_ble_ll_stack - Link layer stack

For example:

(gdb) monitor halt
(gdb) set print pretty on
(gdb) p ble_phy_stats
$16 = {
 s_hdr = {
 s_name = 0x0,
 s_size = 0 '\000',
 s_cnt = 0 '\000',
 s_pad1 = 0,
 s_next = {
 stqe_next = 0x0
 }
 },
 sphy_isrs = 0,
 stx_good = 1,
 stx_fail = 0,
 stx_late = 0,
 stx_bytes = 27,
 srx_starts = 0,
 srx_aborts = 0,
 srx_valid = 0,
 srx_crc_err = 0,
 srx_late = 0,
 sno_bufs = 0,
 sradio_state_errs = 0,
 srx_hw_err = 0,
 stx_hw_err = 0
}

Memory Manipulation

You can display the memory contents of a specific address via the x command.

To see the main stack pointer location on an ARM chip, for example, run:

(gdb) x 0
0x0: 0x20008000

You can also adjust the output size with the optional x/nfu flags:

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 76 of 87

n Indicates how much memory to display (in u units), default = 1
f Indicates the display format, where:

s means null-terminated string
i means machine instruction
x Display as hexadecimal (default)
d Display as signed decimal
u Display as unsigned decimal
c Print as a char constant
f Print in floating point syntax
t Print integer as binary

u The unit size, which can be:

b Bytes
h Halfwords (two bytes)
w Words (four bytes)
g Giant worlds (eight bytes)

> Note: Whenever you change the unit size (u), the updated value becomes
> the system default and will be retained on future requests until it is
> changed again.

For example, to display the same 32-bit stack pointer at address 0 on an ARM
processor as four individual bytes displayed as unsigned decimal values you
would enter:

(gdb) x/4ub 0
0x0: 0 128 0 32

To display the 32-bit value in binary notation you would enter:

(gdb) x/4tb 0
0x0: 00000000 10000000 00000000 00100000

To display 4 'words' as 32-bit values in hex notation:

(gdb) x/4xw 0
0x0: 0x20008000 0x00003049 0x00003099 0x00003099

Stack Manipulation

The following commands can be used to work with the stack such as producing a
dump of the stack frames, or checking for stack overflow.

Display the Stack Trace

You can display a list of function calls up to the point where the MCU halted
with the backtrace or bt command, which will dump individual stack
frame records:

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 77 of 87

(gdb) bt
#0 os_tick_idle (ticks=131072) at hal_os_tick.c:146
#1 0x000091f6 in os_idle_task (arg=<optimized out="">) at os.c:64
#2 0x00000000 in ?? ()

Each line shows the frame number, and the function name and return address.
In this case, the code has stopped at os_tick_idle in halostick.c, which
was called from os_idle_task in os.c.

Display Stack Frame Details

You can display detailed information about a specific stack frame via the
info frame [n] command:

(gdb) info frame
Stack level 0, frame at 0x20001e60:
 pc = 0x184aa in os_tick_idle (hal_os_tick.c:146); saved pc = 0x91f6
 called by frame at 0x20001e80
 source language c.
 Arglist at 0x20001e40, args: ticks=131072
 Locals at 0x20001e40, Previous frame's sp is 0x20001e60
 Saved registers:
 r3 at 0x20001e48, r4 at 0x20001e4c, r5 at 0x20001e50, r6 at 0x20001e54, r7 at 0x20001e58, r8 at 0x20001e40,
 r9 at 0x20001e44, lr at 0x20001e5c

To display the arguments for the current stack frame you can run:

(gdb) info args
ticks = 131072

To display the local variables (one per line) for the stack frame run (data
may or may not be available depending on build setings):

(gdb) info locals
ocmp = <optimized out="">

Displaying ARM Registers

You can also display a list of the ARM registers via info registers .

The following example shows the same pc value seen above where we are halted
at 0x184aa on os_tick_idle , and the stack pointer (sp) is at 0x20001e40,
one 32 byte (0x20) stack frame away from the value seen earlier.

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 78 of 87

(gdb) info registers
r0 0x800000 8388608
r1 0x4000b000 1073786880
r2 0xb4a5e0 11838944
r3 0x3fffef 4194287
r4 0xffffffff 4294967295
r5 0xffffff 16777215
r6 0x504 1284
r7 0x540 1344
r8 0xff800000 4286578688
r9 0x20000 131072
r10 0x1fff8000 536838144
r11 0x0 0
r12 0x20 32
sp 0x20001e40 0x20001e40 <g_idle_task_stack+192>
lr 0x18435 99381
pc 0x184aa 0x184aa <os_tick_idle+182>
xpsr 0x21000000 553648128
MSP 0x20008000 536903680
PSP 0x20001e40 536878656
PRIMASK 0x1 1
BASEPRI 0x0 0
FAULTMASK 0x0 0
CONTROL 0x2 2

Working with Source Code

You can display source code inside GDB with some basic commands.

Displaying a function

This will display the first 10 lines of the specified function:

(gdb) list os_idle_task
39 #endif
40 #define MAX_IDLE_TICKS (600 * OS_TICKS_PER_SEC) /* 10 minutes */
41
42 void
43 os_idle_task(void *arg)
44 {
45 os_sr_t sr;
46 os_time_t now;
47 os_time_t iticks, sticks, cticks;
48

To display the next 10 lines enter:

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 79 of 87

(gdb) list
49 /* For now, idle task simply increments a counter to show it is running. */
50 while (1) {
51 ++g_os_idle_ctr;
52 OS_ENTER_CRITICAL(sr);
53 now = os_time_get();
54 sticks = os_sched_wakeup_ticks(now);
55 cticks = os_callout_wakeup_ticks(now);
56 iticks = min(sticks, cticks);
57 if (iticks < MIN_IDLE_TICKS) {
58 iticks = 0;

> Tip: You can adjust the number of lines displayed via set listsize [count]

Displaying code at a specific address

If you wish to display the code at a specific address you can prefix the address
with a * character as shown below:

(gdb) list *0x00009e54
0x9e54 is in crash_device (crash_test.c:46).
41 if (!strcmp(how, "div0")) {
42
43 val1 = 42;
44 val2 = 0;
45
46 val3 = val1 / val2;
47 console_printf("42/0 = %d\n", val3);
48 } else if (!strcmp(how, "jump0")) {
49 ((void (*)(void))0)();
50 } else if (!strcmp(how, "ref0")) {

Running an arbitrary function when halted at a breakpoint

When halted at a breakpoint, you can run a function via the call command. Tip via Håkon Alseth.

> Make sure to include the parenthesis after the function name when issuing the call command, which will cause the
device to go back to the halt state once the function has completed execution.

Connect to the target using $ newt debug target_name or via some variation of the following code:

arm-none-eabi-gdb _build/*.out
(gdb) target remote :2331
(gdb) load

Then run until you hit the BP, and at an appropriate moment execute the call command with your target function
name:

(gdb) mon reset
(gdb) c
<break somewhere="" in="" your="" code,="" optionally="" using="" ctrl+c="">
(gdb) call test_function()

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 80 of 87

https://devzone.nordicsemi.com/question/161648/call-function-from-gdb-at-breakpoint/?answer=161674#post-id-161674

Command Line Debugging
The following tips and tricks can be used when debugging from the command line.

Grep'ing Source Code

The grep tool allows you to efficiently find references to strings in the
current folder or recursively, such as looking for every reference to a
specific function name or variable in your codebase.

Grep recursively for a partial string

To perform a recursive search for a partial string enter:

$ grep -rn "./" -e "SEARCH_PATTERN"

r means recursive
n means show line numbers
e is the string to search for (SEARCH_PATTERN in this case)

This will return a reference to any instance starting with SEARCH_PATTERN ,
including the specific line number.

> NOTE: This search is case-sensitive. Adding the i flag will make
the search case insensitive.

Grep recursively for an exact string

To perform a recursive search for an exact match of an entire string enter:

$ grep -rnw "./" -e "SEARCH_PATTERN"

w means whole word

This will return a reference to any instances of SEARCH_PATTERN .

Grep recursively for a string ignoring the case

If you wish the search to be case insensitive you can also add the -i
argument, as shown below:

$ grep -rni "./" -e "SeArCh_PaTtErN"

i means case insensitive (default is case sensitive searching)

This would return 'SearchPattern' or 'SEARCHPATTERN' as valid matches.

Grep recursively with specific file types

If you wish to restrict your search to a specific file type, you can use the
--include flag as follows:

$ grep --include=*.{c,h} -rnw "./" -e "SEARCH_PATTERN"

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 81 of 87

This will only search files ending in .c or .h

You can also exclude certain file types with the --exclude flag:

$ grep --exclude=*.o -rnw "./" -e "SEARCH_PATTERN"

This will exclude all files ending in .o from the search.

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 82 of 87

Field Debugging Tips
Debugging devices deployed remotely is always a challenge but this documentation gives some basic techniques to
help debug issues remotely.

Debugging Crash Dumps

If a task crashes (enter the fault_handler etc.) it will normally generate a simple dump of the system registers, which
can be useful to find the cause of the problem if you have the matching .elf file locally.

This example uses the crash_test library from apache-mynewt-core to simulate various crash events locally via
the crash command from shell:

In the example above we see the output of a divide by zero crash.

The important register value is pc . Make a note of this address since your will use it in one of the debugging methods
described below:

Option 1: Debugging Crash Dumps with GDB

If you have access to the matching app revision, build the target and deploy it to the device under test:

To start GDB via the following command:

This will start up the GDB server and connect to the device under test.

See GDB Debugging for details on using GDB.

Run the following commands from the GDB shell:

crash div0
6976:Unhandled interrupt (3), exception sp 0x2000a960
6976: r0:0x00000000 r1:0x000242bd r2:0x00000000 r3:0x0000002a
6976: r4:0x00000000 r5:0x2000c002 r6:0x2000bffc r7:0x00025e34
6976: r8:0x0000d04d r9:0x0000000c r10:0x20009068 r11:0x55555556
6976:r12:0x00000000 lr:0x00009e45 pc:0x00009e54 psr:0x61000000
6976:ICSR:0x00419803 HFSR:0x40000000 CFSR:0x02000000
6976:BFAR:0xe000ed38 MMFAR:0xe000ed34

$ newt build throughput
$ newt create-image throughput 0.1.0
$ newt load throughput

$ newt debug throughput

Please note that you will require a Segger J-Link to run the 'newt debug' command!

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 83 of 87

https://github.com/adafruit/Adafruit_Mynewt/blob/develop/docs/07_GDBDebugging.bd

You can see here that line 46 of crash_test.c caused the fault, which is where the divide by zero error occurs.

Option 2: Debugging Crash Dumps with objdump

If you have the .elf file but can't use GDB debugger you can see the code for the specified address from the command
line using the objdump tool that is part of GCC.

From the command-line (with GCC available as part of the system path) run the following command:

Note: You must specify a --stop-address that is higher than the --start-address with this command, but you can
increment the hex value by 1 byte to return only the line of code that caused the crash. You can play with the start
and stop addresses to provide some context to the error.

Debugging Repeatable Crashes

If you can repeat the crash scenario, you can find out the cause with the following sequence of events and two
terminal windows:

Run GDB with the following command:

(gdb) monitor go
(gdb) list *0x00009e54
0x9e54 is in crash_device (crash_test.c:46).
41 if (!strcmp(how, "div0")) {
42
43 val1 = 42;
44 val2 = 0;
45
46 val3 = val1 / val2;
47 console_printf("42/0 = %d\n", val3);
48 } else if (!strcmp(how, "jump0")) {
49 ((void (*)(void))0)();
50 } else if (!strcmp(how, "ref0")) {

$ arm-none-eabi-objdump -S --start-address=0x00009e54 --stop-address=0x00009e55 bin/targets/throughput/app

bin/targets/throughput/app/apps/throughput/throughput.elf: file format elf32-littlearm

Disassembly of section .text:

00009e54 <crash_device+0x1c>:
 if (!strcmp(how, "div0")) {

 val1 = 42;
 val2 = 0;

 val3 = val1 / val2;
 9e54: fb93 f3f2 sdiv r3, r3, r2

$ newt run <target-name> 0

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 84 of 87

When GDB comes up type c and press enter .

In a different shell, proceed to do whatever is required to cause the device to crash (such as sending a shell command,
newtmgr cmd, etc..

If the device crashes, GDB should indicate such. You can then type the following commands in GDB to find out where
is crashed:

(gdb) bt
(gdb) p *g_current_task

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 85 of 87

Adafruit_Mynewt
Adafruit_Mynewt is a sample Mynewt project that we use internally for various projects and experiments.

It isn't necessary to use this with the Adafruit Feather nRF52 Pro, but the repository contains a number of helper
modules and apps, and can help you get started working with things like BLE UART and general Bluetooth Low Energy
communication.

View Adafruit_Mynewt on Github

https://adafru.it/zKA

Installing Adafruit_Mynewt

To install and use the repo locally, first create a git clone of it using your favorite git IDE or from the command-line via:

Once the repository in installed locally, enter the Adafruit_Mynewt directory and install the Mynewt dependencies and
libraries via:

Provided Apps

Not all of the apps includes in the /apps folder are useful to everyone, but the following may serve as a good starting
point for you own applications of learning requirements:

bleuart: This example initialises the BLE stack, and includes a BLE UART service and shell commands and
statistics support to interact with the BLE UART service. This is the application that ships with our boards off the
assembly line.
throughput: This example can be used to test the throughput speed of BLE using BLE UART. It includes a shell
command (' nustest ') to start and configure the throughput tests.

Helper Modules

The following modules are defined as part of Adafruit_Mynewt to make certain tasks easier to implement:

adautil: This module includes a number of helpers to facilitate working with UUIDs, config settings, data logs,
timer timeouts, etc.
bledis: This module facilitates working with the Device Information Service (dis)
bleuart: This module facilitates working with the Nordic UART Service (nus AKA 'BLE UART')
fifo: This module provides a First In First Out (FIFO) buffer implementation that plays well with the internal
scheduler and RTOS architecture

$ git clone git@github.com:adafruit/Adafruit_Mynewt.git

$ newt install -v

NOTE: You only need to run this command once, since the mynewt core libraries are not part of the
Adafruit_Mynewt repo itself and will be downloaded into the '/repos' folder by 'newt install'

© Adafruit Industries https://learn.adafruit.com/adafruit-nrf52-pro-feather Page 86 of 87

file:///adafruit-nrf52-pro-feather/adding-statistics
https://github.com/adafruit/Adafruit_Mynewt
https://github.com/adafruit/Adafruit_Mynewt/tree/master/apps/bleuart
https://github.com/adafruit/Adafruit_Mynewt/tree/master/apps/throughput
https://github.com/adafruit/Adafruit_Mynewt/tree/master/libs/adautil
https://github.com/adafruit/Adafruit_Mynewt/tree/master/libs/bledis
https://github.com/adafruit/Adafruit_Mynewt/tree/master/libs/bleuart
https://github.com/adafruit/Adafruit_Mynewt/tree/master/libs/fifo

External Content
The following external content may be useful understanding some of the many features available in Apache Mynewt:

Mynewt Bootloader

Build and Package Management

© Adafruit Industries Last Updated: 2017-11-23 12:05:48 AM UTC Page 87 of 87

Downloads
The following resources may be useful working with the Bluefruit nRF52 Feather:

Adafruit_nRF52_Arduino: The core code for this device (hosted on Github)
nRF52 Example Sketches: Browse the example code from the core repo on Github
nRF52832 Product Specification: Key technical documentation for the nRF52832 SoC
EagleCAD PCB files on GitHub

Feather Bluefruit NRF52 Pinout Diagram

https://adafru.it/z4c

Module Details

The Bluefruit nRF52 Feather uses the MDBT42Q module from Raytac. Details on the module, including FCC and other
certifications are available in the document below:

MDBT42Q-Version_B.pdf

https://adafru.it/vbb

Schematic

https://github.com/adafruit/Adafruit_nRF52_Arduino
https://github.com/adafruit/Adafruit_nRF52_Arduino/tree/master/libraries/Bluefruit52Lib/examples
http://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.nrf52%2Fdita%2Fnrf52%2Fchips%2Fnrf52832_ps.html
https://github.com/adafruit/Adafruit-nRF52-Bluefruit-Feather-PCB
https://cdn-learn.adafruit.com/assets/assets/000/046/210/original/Feather_NRF52_Pinout_v1.2.pdf?1504807075
https://cdn-learn.adafruit.com/assets/assets/000/040/357/original/MDBT42Q-Version_B.pdf?1490125904

	Guide Contents
	Overview
	Bluetooth Certification Warning
	Device Pinout
	Special Notes
	Power Pins
	Analog Inputs
	PWM Outputs
	I2C Pins
	Assembly
	Header Options!
	Soldering in Plain Headers
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Soldering on Female Header
	Tape In Place
	Flip & Tack Solder
	And Solder!

	Native Installation (OS X)
	Install newt and newtmgr Binaries
	Install newt
	Install newtmgr

	Install an ARM Cross-Compiling Toolchain
	Optional: Install the OpenOCD Debugger
	Optional: Install Segger J-Link Drivers
	Optional: Install minicom
	Native Installation (Linux)
	Install newt and newtmgr Binaries
	Manual newt Installation
	Manual newtmgr Installation

	Install an ARM Cross-Compiling Toolchain
	Optional: Install the OpenOCD Debugger (Segger J-Link)
	Optional: Install Segger J-Link Drivers
	Optional: Install minicom
	Native Installation (Win)
	Cut auto-reset trace
	Newt
	Setup Go Path

	Install newtmgr Binaries
	ARM Cross-Compiler
	Apache Mynewt Tools
	Standard Tools
	Adafruit Tools
	newt
	Installing newt
	Common newt Commands
	newt build <target_name>
	newt create-image <target_name> <version>
	newt load <target_name>
	newt size <target_name>
	newt target show

	newtmgr
	Installing newtmgr
	Connection Profiles
	Adding a Serial Connection Profile
	Listing Existing Profiles
	Test the Serial Connection Profile

	Common newtmgr Commands
	Display Scheduler Task Activity via 'taskstat'
	Uploading Application Images with newtmgr
	1. Build the Target Application (newt build)
	2. Sign and Version the Image (newt create-image)
	3. Upload the Image (newtmgr image upload)
	4. Test the Image Upload (newtmgr image test [hash])
	5. Reset to Perform the Test and Image Bank Switch (newtmgr reset)
	6. Confirm the Image Switch (newtmgr image confirm)

	Display Internal Statistics
	List all Statistic Groups
	List all Values in a Statistic Group

	Adafruit Mynewt Manager
	Getting the Application
	Source Code
	Apache Mynewt Applications
	Create a New Project
	Create a Project Skeleton
	Download Project Dependencies
	Create a New Application
	Create a New Target
	1. Set the Target's app Field
	2. Set the Target's bsp Field
	3. Set the build_profile Field
	4. Test the Target Settings

	Final Project Structure
	Build and Flash the Target
	Sign the Build with a Version Number
	Flash the Image via a Segger J-Link
	Flash the Image via the Serial Port and newtmgr

	Adding Tasks
	Declaring a task, priority and stack size
	Initializing a task
	Implementing the task handler
	Task Delays
	os_time_delay

	Example: Updating apps/first/src/main.c
	Checking Task Status
	Adding Shell Commands
	Adding shell support
	Adding a custom command handler
	Example: Updating apps/first/src/main.c
	Testing the Shell Command

	Adding Statistics
	Configuring Your App for Statistics
	Adding Stats to your main.c File:
	Accessing the Stats in Your Code
	Initializing the Stats
	Updating the Stats Values
	Incrementing

	Accessing Stats with the Console or newtmgr
	Console Access
	newtmgr Access

	Example: Adding Stats to apps/first/src/main.c
	Monitoring via netwmgr
	Monitoring via shell/console

	Adding BLE UART Support
	Mynewt Nimble (BLE Stack) Documentation
	Advanced Debugging
	GDB Debugging
	Starting the Debugger
	Displaying Values
	Basic Example
	Formatting Display Values
	Displaying an Array of Values
	Useful Mynewt/Nimble Structs and Fields

	Memory Manipulation
	Stack Manipulation
	Display the Stack Trace
	Display Stack Frame Details
	Displaying ARM Registers

	Working with Source Code
	Displaying a function
	Displaying code at a specific address
	Running an arbitrary function when halted at a breakpoint

	Command Line Debugging
	Grep'ing Source Code
	Grep recursively for a partial string
	Grep recursively for an exact string
	Grep recursively for a string ignoring the case
	Grep recursively with specific file types

	Field Debugging Tips
	Debugging Crash Dumps
	Option 1: Debugging Crash Dumps with GDB
	Option 2: Debugging Crash Dumps with objdump

	Debugging Repeatable Crashes
	Adafruit_Mynewt
	Installing Adafruit_Mynewt
	Provided Apps
	Helper Modules
	External Content
	Mynewt Bootloader
	Build and Package Management
	Downloads
	Module Details
	Schematic

